3206 lines
102 KiB
C++
3206 lines
102 KiB
C++
// Copyright 2020 The Abseil Authors.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// https://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "absl/strings/cord.h"
|
|
|
|
#include <algorithm>
|
|
#include <climits>
|
|
#include <cstdio>
|
|
#include <iterator>
|
|
#include <map>
|
|
#include <numeric>
|
|
#include <random>
|
|
#include <sstream>
|
|
#include <type_traits>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
#include "gmock/gmock.h"
|
|
#include "gtest/gtest.h"
|
|
#include "absl/base/config.h"
|
|
#include "absl/base/internal/endian.h"
|
|
#include "absl/base/macros.h"
|
|
#include "absl/container/fixed_array.h"
|
|
#include "absl/hash/hash.h"
|
|
#include "absl/log/check.h"
|
|
#include "absl/log/log.h"
|
|
#include "absl/random/random.h"
|
|
#include "absl/strings/cord_test_helpers.h"
|
|
#include "absl/strings/cordz_test_helpers.h"
|
|
#include "absl/strings/match.h"
|
|
#include "absl/strings/str_cat.h"
|
|
#include "absl/strings/str_format.h"
|
|
#include "absl/strings/string_view.h"
|
|
|
|
// convenience local constants
|
|
static constexpr auto FLAT = absl::cord_internal::FLAT;
|
|
static constexpr auto MAX_FLAT_TAG = absl::cord_internal::MAX_FLAT_TAG;
|
|
|
|
typedef std::mt19937_64 RandomEngine;
|
|
|
|
using absl::cord_internal::CordRep;
|
|
using absl::cord_internal::CordRepBtree;
|
|
using absl::cord_internal::CordRepConcat;
|
|
using absl::cord_internal::CordRepCrc;
|
|
using absl::cord_internal::CordRepExternal;
|
|
using absl::cord_internal::CordRepFlat;
|
|
using absl::cord_internal::CordRepSubstring;
|
|
using absl::cord_internal::CordzUpdateTracker;
|
|
using absl::cord_internal::kFlatOverhead;
|
|
using absl::cord_internal::kMaxFlatLength;
|
|
using ::testing::ElementsAre;
|
|
using ::testing::Le;
|
|
|
|
static std::string RandomLowercaseString(RandomEngine* rng);
|
|
static std::string RandomLowercaseString(RandomEngine* rng, size_t length);
|
|
|
|
static int GetUniformRandomUpTo(RandomEngine* rng, int upper_bound) {
|
|
if (upper_bound > 0) {
|
|
std::uniform_int_distribution<int> uniform(0, upper_bound - 1);
|
|
return uniform(*rng);
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static size_t GetUniformRandomUpTo(RandomEngine* rng, size_t upper_bound) {
|
|
if (upper_bound > 0) {
|
|
std::uniform_int_distribution<size_t> uniform(0, upper_bound - 1);
|
|
return uniform(*rng);
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static int32_t GenerateSkewedRandom(RandomEngine* rng, int max_log) {
|
|
const uint32_t base = (*rng)() % (max_log + 1);
|
|
const uint32_t mask = ((base < 32) ? (1u << base) : 0u) - 1u;
|
|
return (*rng)() & mask;
|
|
}
|
|
|
|
static std::string RandomLowercaseString(RandomEngine* rng) {
|
|
int length;
|
|
std::bernoulli_distribution one_in_1k(0.001);
|
|
std::bernoulli_distribution one_in_10k(0.0001);
|
|
// With low probability, make a large fragment
|
|
if (one_in_10k(*rng)) {
|
|
length = GetUniformRandomUpTo(rng, 1048576);
|
|
} else if (one_in_1k(*rng)) {
|
|
length = GetUniformRandomUpTo(rng, 10000);
|
|
} else {
|
|
length = GenerateSkewedRandom(rng, 10);
|
|
}
|
|
return RandomLowercaseString(rng, length);
|
|
}
|
|
|
|
static std::string RandomLowercaseString(RandomEngine* rng, size_t length) {
|
|
std::string result(length, '\0');
|
|
std::uniform_int_distribution<int> chars('a', 'z');
|
|
std::generate(result.begin(), result.end(),
|
|
[&]() { return static_cast<char>(chars(*rng)); });
|
|
return result;
|
|
}
|
|
|
|
static void DoNothing(absl::string_view /* data */, void* /* arg */) {}
|
|
|
|
static void DeleteExternalString(absl::string_view data, void* arg) {
|
|
std::string* s = reinterpret_cast<std::string*>(arg);
|
|
EXPECT_EQ(data, *s);
|
|
delete s;
|
|
}
|
|
|
|
// Add "s" to *dst via `MakeCordFromExternal`
|
|
static void AddExternalMemory(absl::string_view s, absl::Cord* dst) {
|
|
std::string* str = new std::string(s.data(), s.size());
|
|
dst->Append(absl::MakeCordFromExternal(*str, [str](absl::string_view data) {
|
|
DeleteExternalString(data, str);
|
|
}));
|
|
}
|
|
|
|
static void DumpGrowth() {
|
|
absl::Cord str;
|
|
for (int i = 0; i < 1000; i++) {
|
|
char c = 'a' + i % 26;
|
|
str.Append(absl::string_view(&c, 1));
|
|
}
|
|
}
|
|
|
|
// Make a Cord with some number of fragments. Return the size (in bytes)
|
|
// of the smallest fragment.
|
|
static size_t AppendWithFragments(const std::string& s, RandomEngine* rng,
|
|
absl::Cord* cord) {
|
|
size_t j = 0;
|
|
const size_t max_size = s.size() / 5; // Make approx. 10 fragments
|
|
size_t min_size = max_size; // size of smallest fragment
|
|
while (j < s.size()) {
|
|
size_t N = 1 + GetUniformRandomUpTo(rng, max_size);
|
|
if (N > (s.size() - j)) {
|
|
N = s.size() - j;
|
|
}
|
|
if (N < min_size) {
|
|
min_size = N;
|
|
}
|
|
|
|
std::bernoulli_distribution coin_flip(0.5);
|
|
if (coin_flip(*rng)) {
|
|
// Grow by adding an external-memory.
|
|
AddExternalMemory(absl::string_view(s.data() + j, N), cord);
|
|
} else {
|
|
cord->Append(absl::string_view(s.data() + j, N));
|
|
}
|
|
j += N;
|
|
}
|
|
return min_size;
|
|
}
|
|
|
|
// Add an external memory that contains the specified std::string to cord
|
|
static void AddNewStringBlock(const std::string& str, absl::Cord* dst) {
|
|
char* data = new char[str.size()];
|
|
memcpy(data, str.data(), str.size());
|
|
dst->Append(absl::MakeCordFromExternal(
|
|
absl::string_view(data, str.size()),
|
|
[](absl::string_view s) { delete[] s.data(); }));
|
|
}
|
|
|
|
// Make a Cord out of many different types of nodes.
|
|
static absl::Cord MakeComposite() {
|
|
absl::Cord cord;
|
|
cord.Append("the");
|
|
AddExternalMemory(" quick brown", &cord);
|
|
AddExternalMemory(" fox jumped", &cord);
|
|
|
|
absl::Cord full(" over");
|
|
AddExternalMemory(" the lazy", &full);
|
|
AddNewStringBlock(" dog slept the whole day away", &full);
|
|
absl::Cord substring = full.Subcord(0, 18);
|
|
|
|
// Make substring long enough to defeat the copying fast path in Append.
|
|
substring.Append(std::string(1000, '.'));
|
|
cord.Append(substring);
|
|
cord = cord.Subcord(0, cord.size() - 998); // Remove most of extra junk
|
|
|
|
return cord;
|
|
}
|
|
|
|
namespace absl {
|
|
ABSL_NAMESPACE_BEGIN
|
|
|
|
class CordTestPeer {
|
|
public:
|
|
static void ForEachChunk(
|
|
const Cord& c, absl::FunctionRef<void(absl::string_view)> callback) {
|
|
c.ForEachChunk(callback);
|
|
}
|
|
|
|
static bool IsTree(const Cord& c) { return c.contents_.is_tree(); }
|
|
static CordRep* Tree(const Cord& c) { return c.contents_.tree(); }
|
|
|
|
static cord_internal::CordzInfo* GetCordzInfo(const Cord& c) {
|
|
return c.contents_.cordz_info();
|
|
}
|
|
|
|
static Cord MakeSubstring(Cord src, size_t offset, size_t length) {
|
|
CHECK(src.contents_.is_tree()) << "Can not be inlined";
|
|
CHECK(!src.ExpectedChecksum().has_value()) << "Can not be hardened";
|
|
Cord cord;
|
|
auto* tree = cord_internal::SkipCrcNode(src.contents_.tree());
|
|
auto* rep = CordRepSubstring::Create(CordRep::Ref(tree), offset, length);
|
|
cord.contents_.EmplaceTree(rep, CordzUpdateTracker::kSubCord);
|
|
return cord;
|
|
}
|
|
};
|
|
|
|
ABSL_NAMESPACE_END
|
|
} // namespace absl
|
|
|
|
// The CordTest fixture runs all tests with and without Cord Btree enabled,
|
|
// and with our without expected CRCs being set on the subject Cords.
|
|
class CordTest : public testing::TestWithParam<int> {
|
|
public:
|
|
// Returns true if test is running with btree enabled.
|
|
bool UseCrc() const { return GetParam() == 2 || GetParam() == 3; }
|
|
void MaybeHarden(absl::Cord& c) {
|
|
if (UseCrc()) {
|
|
c.SetExpectedChecksum(1);
|
|
}
|
|
}
|
|
absl::Cord MaybeHardened(absl::Cord c) {
|
|
MaybeHarden(c);
|
|
return c;
|
|
}
|
|
|
|
// Returns human readable string representation of the test parameter.
|
|
static std::string ToString(testing::TestParamInfo<int> param) {
|
|
switch (param.param) {
|
|
case 0:
|
|
return "Btree";
|
|
case 1:
|
|
return "BtreeHardened";
|
|
default:
|
|
assert(false);
|
|
return "???";
|
|
}
|
|
}
|
|
};
|
|
|
|
INSTANTIATE_TEST_SUITE_P(WithParam, CordTest, testing::Values(0, 1),
|
|
CordTest::ToString);
|
|
|
|
TEST(CordRepFlat, AllFlatCapacities) {
|
|
// Explicitly and redundantly assert built-in min/max limits
|
|
static_assert(absl::cord_internal::kFlatOverhead < 32, "");
|
|
static_assert(absl::cord_internal::kMinFlatSize == 32, "");
|
|
static_assert(absl::cord_internal::kMaxLargeFlatSize == 256 << 10, "");
|
|
EXPECT_EQ(absl::cord_internal::TagToAllocatedSize(FLAT), 32);
|
|
EXPECT_EQ(absl::cord_internal::TagToAllocatedSize(MAX_FLAT_TAG), 256 << 10);
|
|
|
|
// Verify all tags to map perfectly back and forth, and
|
|
// that sizes are monotonically increasing.
|
|
size_t last_size = 0;
|
|
for (int tag = FLAT; tag <= MAX_FLAT_TAG; ++tag) {
|
|
size_t size = absl::cord_internal::TagToAllocatedSize(tag);
|
|
ASSERT_GT(size, last_size);
|
|
ASSERT_EQ(absl::cord_internal::TagToAllocatedSize(tag), size);
|
|
last_size = size;
|
|
}
|
|
|
|
// All flat size from 32 - 512 are 8 byte granularity
|
|
for (size_t size = 32; size <= 512; size += 8) {
|
|
ASSERT_EQ(absl::cord_internal::RoundUpForTag(size), size);
|
|
uint8_t tag = absl::cord_internal::AllocatedSizeToTag(size);
|
|
ASSERT_EQ(absl::cord_internal::TagToAllocatedSize(tag), size);
|
|
}
|
|
|
|
// All flat sizes from 512 - 8192 are 64 byte granularity
|
|
for (size_t size = 512; size <= 8192; size += 64) {
|
|
ASSERT_EQ(absl::cord_internal::RoundUpForTag(size), size);
|
|
uint8_t tag = absl::cord_internal::AllocatedSizeToTag(size);
|
|
ASSERT_EQ(absl::cord_internal::TagToAllocatedSize(tag), size);
|
|
}
|
|
|
|
// All flat sizes from 8KB to 256KB are 4KB granularity
|
|
for (size_t size = 8192; size <= 256 * 1024; size += 4 * 1024) {
|
|
ASSERT_EQ(absl::cord_internal::RoundUpForTag(size), size);
|
|
uint8_t tag = absl::cord_internal::AllocatedSizeToTag(size);
|
|
ASSERT_EQ(absl::cord_internal::TagToAllocatedSize(tag), size);
|
|
}
|
|
}
|
|
|
|
TEST(CordRepFlat, MaxFlatSize) {
|
|
CordRepFlat* flat = CordRepFlat::New(kMaxFlatLength);
|
|
EXPECT_EQ(flat->Capacity(), kMaxFlatLength);
|
|
CordRep::Unref(flat);
|
|
|
|
flat = CordRepFlat::New(kMaxFlatLength * 4);
|
|
EXPECT_EQ(flat->Capacity(), kMaxFlatLength);
|
|
CordRep::Unref(flat);
|
|
}
|
|
|
|
TEST(CordRepFlat, MaxLargeFlatSize) {
|
|
const size_t size = 256 * 1024 - kFlatOverhead;
|
|
CordRepFlat* flat = CordRepFlat::New(CordRepFlat::Large(), size);
|
|
EXPECT_GE(flat->Capacity(), size);
|
|
CordRep::Unref(flat);
|
|
}
|
|
|
|
TEST(CordRepFlat, AllFlatSizes) {
|
|
const size_t kMaxSize = 256 * 1024;
|
|
for (size_t size = 32; size <= kMaxSize; size *=2) {
|
|
const size_t length = size - kFlatOverhead - 1;
|
|
CordRepFlat* flat = CordRepFlat::New(CordRepFlat::Large(), length);
|
|
EXPECT_GE(flat->Capacity(), length);
|
|
memset(flat->Data(), 0xCD, flat->Capacity());
|
|
CordRep::Unref(flat);
|
|
}
|
|
}
|
|
|
|
TEST_P(CordTest, AllFlatSizes) {
|
|
using absl::strings_internal::CordTestAccess;
|
|
|
|
for (size_t s = 0; s < CordTestAccess::MaxFlatLength(); s++) {
|
|
// Make a string of length s.
|
|
std::string src;
|
|
while (src.size() < s) {
|
|
src.push_back('a' + (src.size() % 26));
|
|
}
|
|
|
|
absl::Cord dst(src);
|
|
MaybeHarden(dst);
|
|
EXPECT_EQ(std::string(dst), src) << s;
|
|
}
|
|
}
|
|
|
|
// We create a Cord at least 128GB in size using the fact that Cords can
|
|
// internally reference-count; thus the Cord is enormous without actually
|
|
// consuming very much memory.
|
|
TEST_P(CordTest, GigabyteCordFromExternal) {
|
|
const size_t one_gig = 1024U * 1024U * 1024U;
|
|
size_t max_size = 2 * one_gig;
|
|
if (sizeof(max_size) > 4) max_size = 128 * one_gig;
|
|
|
|
size_t length = 128 * 1024;
|
|
char* data = new char[length];
|
|
absl::Cord from = absl::MakeCordFromExternal(
|
|
absl::string_view(data, length),
|
|
[](absl::string_view sv) { delete[] sv.data(); });
|
|
|
|
// This loop may seem odd due to its combination of exponential doubling of
|
|
// size and incremental size increases. We do it incrementally to be sure the
|
|
// Cord will need rebalancing and will exercise code that, in the past, has
|
|
// caused crashes in production. We grow exponentially so that the code will
|
|
// execute in a reasonable amount of time.
|
|
absl::Cord c;
|
|
c.Append(from);
|
|
while (c.size() < max_size) {
|
|
c.Append(c);
|
|
c.Append(from);
|
|
c.Append(from);
|
|
c.Append(from);
|
|
c.Append(from);
|
|
MaybeHarden(c);
|
|
}
|
|
|
|
for (int i = 0; i < 1024; ++i) {
|
|
c.Append(from);
|
|
}
|
|
LOG(INFO) << "Made a Cord with " << c.size() << " bytes!";
|
|
// Note: on a 32-bit build, this comes out to 2,818,048,000 bytes.
|
|
// Note: on a 64-bit build, this comes out to 171,932,385,280 bytes.
|
|
}
|
|
|
|
static absl::Cord MakeExternalCord(int size) {
|
|
char* buffer = new char[size];
|
|
memset(buffer, 'x', size);
|
|
absl::Cord cord;
|
|
cord.Append(absl::MakeCordFromExternal(
|
|
absl::string_view(buffer, size),
|
|
[](absl::string_view s) { delete[] s.data(); }));
|
|
return cord;
|
|
}
|
|
|
|
// Extern to fool clang that this is not constant. Needed to suppress
|
|
// a warning of unsafe code we want to test.
|
|
extern bool my_unique_true_boolean;
|
|
bool my_unique_true_boolean = true;
|
|
|
|
TEST_P(CordTest, Assignment) {
|
|
absl::Cord x(absl::string_view("hi there"));
|
|
absl::Cord y(x);
|
|
MaybeHarden(y);
|
|
ASSERT_EQ(x.ExpectedChecksum(), absl::nullopt);
|
|
ASSERT_EQ(std::string(x), "hi there");
|
|
ASSERT_EQ(std::string(y), "hi there");
|
|
ASSERT_TRUE(x == y);
|
|
ASSERT_TRUE(x <= y);
|
|
ASSERT_TRUE(y <= x);
|
|
|
|
x = absl::string_view("foo");
|
|
ASSERT_EQ(std::string(x), "foo");
|
|
ASSERT_EQ(std::string(y), "hi there");
|
|
ASSERT_TRUE(x < y);
|
|
ASSERT_TRUE(y > x);
|
|
ASSERT_TRUE(x != y);
|
|
ASSERT_TRUE(x <= y);
|
|
ASSERT_TRUE(y >= x);
|
|
|
|
x = "foo";
|
|
ASSERT_EQ(x, "foo");
|
|
|
|
// Test that going from inline rep to tree we don't leak memory.
|
|
std::vector<std::pair<absl::string_view, absl::string_view>>
|
|
test_string_pairs = {{"hi there", "foo"},
|
|
{"loooooong coooooord", "short cord"},
|
|
{"short cord", "loooooong coooooord"},
|
|
{"loooooong coooooord1", "loooooong coooooord2"}};
|
|
for (std::pair<absl::string_view, absl::string_view> test_strings :
|
|
test_string_pairs) {
|
|
absl::Cord tmp(test_strings.first);
|
|
absl::Cord z(std::move(tmp));
|
|
ASSERT_EQ(std::string(z), test_strings.first);
|
|
tmp = test_strings.second;
|
|
z = std::move(tmp);
|
|
ASSERT_EQ(std::string(z), test_strings.second);
|
|
}
|
|
{
|
|
// Test that self-move assignment doesn't crash/leak.
|
|
// Do not write such code!
|
|
absl::Cord my_small_cord("foo");
|
|
absl::Cord my_big_cord("loooooong coooooord");
|
|
// Bypass clang's warning on self move-assignment.
|
|
absl::Cord* my_small_alias =
|
|
my_unique_true_boolean ? &my_small_cord : &my_big_cord;
|
|
absl::Cord* my_big_alias =
|
|
!my_unique_true_boolean ? &my_small_cord : &my_big_cord;
|
|
|
|
*my_small_alias = std::move(my_small_cord);
|
|
*my_big_alias = std::move(my_big_cord);
|
|
// my_small_cord and my_big_cord are in an unspecified but valid
|
|
// state, and will be correctly destroyed here.
|
|
}
|
|
}
|
|
|
|
TEST_P(CordTest, StartsEndsWith) {
|
|
absl::Cord x(absl::string_view("abcde"));
|
|
MaybeHarden(x);
|
|
absl::Cord empty("");
|
|
|
|
ASSERT_TRUE(x.StartsWith(absl::Cord("abcde")));
|
|
ASSERT_TRUE(x.StartsWith(absl::Cord("abc")));
|
|
ASSERT_TRUE(x.StartsWith(absl::Cord("")));
|
|
ASSERT_TRUE(empty.StartsWith(absl::Cord("")));
|
|
ASSERT_TRUE(x.EndsWith(absl::Cord("abcde")));
|
|
ASSERT_TRUE(x.EndsWith(absl::Cord("cde")));
|
|
ASSERT_TRUE(x.EndsWith(absl::Cord("")));
|
|
ASSERT_TRUE(empty.EndsWith(absl::Cord("")));
|
|
|
|
ASSERT_TRUE(!x.StartsWith(absl::Cord("xyz")));
|
|
ASSERT_TRUE(!empty.StartsWith(absl::Cord("xyz")));
|
|
ASSERT_TRUE(!x.EndsWith(absl::Cord("xyz")));
|
|
ASSERT_TRUE(!empty.EndsWith(absl::Cord("xyz")));
|
|
|
|
ASSERT_TRUE(x.StartsWith("abcde"));
|
|
ASSERT_TRUE(x.StartsWith("abc"));
|
|
ASSERT_TRUE(x.StartsWith(""));
|
|
ASSERT_TRUE(empty.StartsWith(""));
|
|
ASSERT_TRUE(x.EndsWith("abcde"));
|
|
ASSERT_TRUE(x.EndsWith("cde"));
|
|
ASSERT_TRUE(x.EndsWith(""));
|
|
ASSERT_TRUE(empty.EndsWith(""));
|
|
|
|
ASSERT_TRUE(!x.StartsWith("xyz"));
|
|
ASSERT_TRUE(!empty.StartsWith("xyz"));
|
|
ASSERT_TRUE(!x.EndsWith("xyz"));
|
|
ASSERT_TRUE(!empty.EndsWith("xyz"));
|
|
}
|
|
|
|
TEST_P(CordTest, Subcord) {
|
|
RandomEngine rng(GTEST_FLAG_GET(random_seed));
|
|
const std::string s = RandomLowercaseString(&rng, 1024);
|
|
|
|
absl::Cord a;
|
|
AppendWithFragments(s, &rng, &a);
|
|
MaybeHarden(a);
|
|
ASSERT_EQ(s, std::string(a));
|
|
|
|
// Check subcords of a, from a variety of interesting points.
|
|
std::set<size_t> positions;
|
|
for (int i = 0; i <= 32; ++i) {
|
|
positions.insert(i);
|
|
positions.insert(i * 32 - 1);
|
|
positions.insert(i * 32);
|
|
positions.insert(i * 32 + 1);
|
|
positions.insert(a.size() - i);
|
|
}
|
|
positions.insert(237);
|
|
positions.insert(732);
|
|
for (size_t pos : positions) {
|
|
if (pos > a.size()) continue;
|
|
for (size_t end_pos : positions) {
|
|
if (end_pos < pos || end_pos > a.size()) continue;
|
|
absl::Cord sa = a.Subcord(pos, end_pos - pos);
|
|
ASSERT_EQ(absl::string_view(s).substr(pos, end_pos - pos),
|
|
std::string(sa))
|
|
<< a;
|
|
if (pos != 0 || end_pos != a.size()) {
|
|
ASSERT_EQ(sa.ExpectedChecksum(), absl::nullopt);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Do the same thing for an inline cord.
|
|
const std::string sh = "short";
|
|
absl::Cord c(sh);
|
|
for (size_t pos = 0; pos <= sh.size(); ++pos) {
|
|
for (size_t n = 0; n <= sh.size() - pos; ++n) {
|
|
absl::Cord sc = c.Subcord(pos, n);
|
|
ASSERT_EQ(sh.substr(pos, n), std::string(sc)) << c;
|
|
}
|
|
}
|
|
|
|
// Check subcords of subcords.
|
|
absl::Cord sa = a.Subcord(0, a.size());
|
|
std::string ss = s.substr(0, s.size());
|
|
while (sa.size() > 1) {
|
|
sa = sa.Subcord(1, sa.size() - 2);
|
|
ss = ss.substr(1, ss.size() - 2);
|
|
ASSERT_EQ(ss, std::string(sa)) << a;
|
|
if (HasFailure()) break; // halt cascade
|
|
}
|
|
|
|
// It is OK to ask for too much.
|
|
sa = a.Subcord(0, a.size() + 1);
|
|
EXPECT_EQ(s, std::string(sa));
|
|
|
|
// It is OK to ask for something beyond the end.
|
|
sa = a.Subcord(a.size() + 1, 0);
|
|
EXPECT_TRUE(sa.empty());
|
|
sa = a.Subcord(a.size() + 1, 1);
|
|
EXPECT_TRUE(sa.empty());
|
|
}
|
|
|
|
TEST_P(CordTest, Swap) {
|
|
absl::string_view a("Dexter");
|
|
absl::string_view b("Mandark");
|
|
absl::Cord x(a);
|
|
absl::Cord y(b);
|
|
MaybeHarden(x);
|
|
swap(x, y);
|
|
if (UseCrc()) {
|
|
ASSERT_EQ(x.ExpectedChecksum(), absl::nullopt);
|
|
ASSERT_EQ(y.ExpectedChecksum(), 1);
|
|
}
|
|
ASSERT_EQ(x, absl::Cord(b));
|
|
ASSERT_EQ(y, absl::Cord(a));
|
|
x.swap(y);
|
|
if (UseCrc()) {
|
|
ASSERT_EQ(x.ExpectedChecksum(), 1);
|
|
ASSERT_EQ(y.ExpectedChecksum(), absl::nullopt);
|
|
}
|
|
ASSERT_EQ(x, absl::Cord(a));
|
|
ASSERT_EQ(y, absl::Cord(b));
|
|
}
|
|
|
|
static void VerifyCopyToString(const absl::Cord& cord) {
|
|
std::string initially_empty;
|
|
absl::CopyCordToString(cord, &initially_empty);
|
|
EXPECT_EQ(initially_empty, cord);
|
|
|
|
constexpr size_t kInitialLength = 1024;
|
|
std::string has_initial_contents(kInitialLength, 'x');
|
|
const char* address_before_copy = has_initial_contents.data();
|
|
absl::CopyCordToString(cord, &has_initial_contents);
|
|
EXPECT_EQ(has_initial_contents, cord);
|
|
|
|
if (cord.size() <= kInitialLength) {
|
|
EXPECT_EQ(has_initial_contents.data(), address_before_copy)
|
|
<< "CopyCordToString allocated new string storage; "
|
|
"has_initial_contents = \""
|
|
<< has_initial_contents << "\"";
|
|
}
|
|
}
|
|
|
|
TEST_P(CordTest, CopyToString) {
|
|
VerifyCopyToString(absl::Cord()); // empty cords cannot carry CRCs
|
|
VerifyCopyToString(MaybeHardened(absl::Cord("small cord")));
|
|
VerifyCopyToString(MaybeHardened(
|
|
absl::MakeFragmentedCord({"fragmented ", "cord ", "to ", "test ",
|
|
"copying ", "to ", "a ", "string."})));
|
|
}
|
|
|
|
TEST_P(CordTest, AppendEmptyBuffer) {
|
|
absl::Cord cord;
|
|
cord.Append(absl::CordBuffer());
|
|
cord.Append(absl::CordBuffer::CreateWithDefaultLimit(2000));
|
|
}
|
|
|
|
TEST_P(CordTest, AppendEmptyBufferToFlat) {
|
|
absl::Cord cord(std::string(2000, 'x'));
|
|
cord.Append(absl::CordBuffer());
|
|
cord.Append(absl::CordBuffer::CreateWithDefaultLimit(2000));
|
|
}
|
|
|
|
TEST_P(CordTest, AppendEmptyBufferToTree) {
|
|
absl::Cord cord(std::string(2000, 'x'));
|
|
cord.Append(std::string(2000, 'y'));
|
|
cord.Append(absl::CordBuffer());
|
|
cord.Append(absl::CordBuffer::CreateWithDefaultLimit(2000));
|
|
}
|
|
|
|
TEST_P(CordTest, AppendSmallBuffer) {
|
|
absl::Cord cord;
|
|
absl::CordBuffer buffer = absl::CordBuffer::CreateWithDefaultLimit(3);
|
|
ASSERT_THAT(buffer.capacity(), Le(15));
|
|
memcpy(buffer.data(), "Abc", 3);
|
|
buffer.SetLength(3);
|
|
cord.Append(std::move(buffer));
|
|
EXPECT_EQ(buffer.length(), 0); // NOLINT
|
|
EXPECT_GT(buffer.capacity(), 0); // NOLINT
|
|
|
|
buffer = absl::CordBuffer::CreateWithDefaultLimit(3);
|
|
memcpy(buffer.data(), "defgh", 5);
|
|
buffer.SetLength(5);
|
|
cord.Append(std::move(buffer));
|
|
EXPECT_EQ(buffer.length(), 0); // NOLINT
|
|
EXPECT_GT(buffer.capacity(), 0); // NOLINT
|
|
|
|
EXPECT_THAT(cord.Chunks(), ElementsAre("Abcdefgh"));
|
|
}
|
|
|
|
TEST_P(CordTest, AppendAndPrependBufferArePrecise) {
|
|
// Create a cord large enough to force 40KB flats.
|
|
std::string test_data(absl::cord_internal::kMaxFlatLength * 10, 'x');
|
|
absl::Cord cord1(test_data);
|
|
absl::Cord cord2(test_data);
|
|
const size_t size1 = cord1.EstimatedMemoryUsage();
|
|
const size_t size2 = cord2.EstimatedMemoryUsage();
|
|
|
|
absl::CordBuffer buffer = absl::CordBuffer::CreateWithDefaultLimit(3);
|
|
memcpy(buffer.data(), "Abc", 3);
|
|
buffer.SetLength(3);
|
|
cord1.Append(std::move(buffer));
|
|
|
|
buffer = absl::CordBuffer::CreateWithDefaultLimit(3);
|
|
memcpy(buffer.data(), "Abc", 3);
|
|
buffer.SetLength(3);
|
|
cord2.Prepend(std::move(buffer));
|
|
|
|
#ifndef NDEBUG
|
|
// Allow 32 bytes new CordRepFlat, and 128 bytes for 'glue nodes'
|
|
constexpr size_t kMaxDelta = 128 + 32;
|
|
#else
|
|
// Allow 256 bytes extra for 'allocation debug overhead'
|
|
constexpr size_t kMaxDelta = 128 + 32 + 256;
|
|
#endif
|
|
|
|
EXPECT_LE(cord1.EstimatedMemoryUsage() - size1, kMaxDelta);
|
|
EXPECT_LE(cord2.EstimatedMemoryUsage() - size2, kMaxDelta);
|
|
|
|
EXPECT_EQ(cord1, absl::StrCat(test_data, "Abc"));
|
|
EXPECT_EQ(cord2, absl::StrCat("Abc", test_data));
|
|
}
|
|
|
|
TEST_P(CordTest, PrependSmallBuffer) {
|
|
absl::Cord cord;
|
|
absl::CordBuffer buffer = absl::CordBuffer::CreateWithDefaultLimit(3);
|
|
ASSERT_THAT(buffer.capacity(), Le(15));
|
|
memcpy(buffer.data(), "Abc", 3);
|
|
buffer.SetLength(3);
|
|
cord.Prepend(std::move(buffer));
|
|
EXPECT_EQ(buffer.length(), 0); // NOLINT
|
|
EXPECT_GT(buffer.capacity(), 0); // NOLINT
|
|
|
|
buffer = absl::CordBuffer::CreateWithDefaultLimit(3);
|
|
memcpy(buffer.data(), "defgh", 5);
|
|
buffer.SetLength(5);
|
|
cord.Prepend(std::move(buffer));
|
|
EXPECT_EQ(buffer.length(), 0); // NOLINT
|
|
EXPECT_GT(buffer.capacity(), 0); // NOLINT
|
|
|
|
EXPECT_THAT(cord.Chunks(), ElementsAre("defghAbc"));
|
|
}
|
|
|
|
TEST_P(CordTest, AppendLargeBuffer) {
|
|
absl::Cord cord;
|
|
|
|
std::string s1(700, '1');
|
|
absl::CordBuffer buffer = absl::CordBuffer::CreateWithDefaultLimit(s1.size());
|
|
memcpy(buffer.data(), s1.data(), s1.size());
|
|
buffer.SetLength(s1.size());
|
|
cord.Append(std::move(buffer));
|
|
EXPECT_EQ(buffer.length(), 0); // NOLINT
|
|
EXPECT_GT(buffer.capacity(), 0); // NOLINT
|
|
|
|
std::string s2(1000, '2');
|
|
buffer = absl::CordBuffer::CreateWithDefaultLimit(s2.size());
|
|
memcpy(buffer.data(), s2.data(), s2.size());
|
|
buffer.SetLength(s2.size());
|
|
cord.Append(std::move(buffer));
|
|
EXPECT_EQ(buffer.length(), 0); // NOLINT
|
|
EXPECT_GT(buffer.capacity(), 0); // NOLINT
|
|
|
|
EXPECT_THAT(cord.Chunks(), ElementsAre(s1, s2));
|
|
}
|
|
|
|
TEST_P(CordTest, PrependLargeBuffer) {
|
|
absl::Cord cord;
|
|
|
|
std::string s1(700, '1');
|
|
absl::CordBuffer buffer = absl::CordBuffer::CreateWithDefaultLimit(s1.size());
|
|
memcpy(buffer.data(), s1.data(), s1.size());
|
|
buffer.SetLength(s1.size());
|
|
cord.Prepend(std::move(buffer));
|
|
EXPECT_EQ(buffer.length(), 0); // NOLINT
|
|
EXPECT_GT(buffer.capacity(), 0); // NOLINT
|
|
|
|
std::string s2(1000, '2');
|
|
buffer = absl::CordBuffer::CreateWithDefaultLimit(s2.size());
|
|
memcpy(buffer.data(), s2.data(), s2.size());
|
|
buffer.SetLength(s2.size());
|
|
cord.Prepend(std::move(buffer));
|
|
EXPECT_EQ(buffer.length(), 0); // NOLINT
|
|
EXPECT_GT(buffer.capacity(), 0); // NOLINT
|
|
|
|
EXPECT_THAT(cord.Chunks(), ElementsAre(s2, s1));
|
|
}
|
|
|
|
class CordAppendBufferTest : public testing::TestWithParam<bool> {
|
|
public:
|
|
size_t is_default() const { return GetParam(); }
|
|
|
|
// Returns human readable string representation of the test parameter.
|
|
static std::string ToString(testing::TestParamInfo<bool> param) {
|
|
return param.param ? "DefaultLimit" : "CustomLimit";
|
|
}
|
|
|
|
size_t limit() const {
|
|
return is_default() ? absl::CordBuffer::kDefaultLimit
|
|
: absl::CordBuffer::kCustomLimit;
|
|
}
|
|
|
|
size_t maximum_payload() const {
|
|
return is_default() ? absl::CordBuffer::MaximumPayload()
|
|
: absl::CordBuffer::MaximumPayload(limit());
|
|
}
|
|
|
|
absl::CordBuffer GetAppendBuffer(absl::Cord& cord, size_t capacity,
|
|
size_t min_capacity = 16) {
|
|
return is_default()
|
|
? cord.GetAppendBuffer(capacity, min_capacity)
|
|
: cord.GetCustomAppendBuffer(limit(), capacity, min_capacity);
|
|
}
|
|
};
|
|
|
|
INSTANTIATE_TEST_SUITE_P(WithParam, CordAppendBufferTest, testing::Bool(),
|
|
CordAppendBufferTest::ToString);
|
|
|
|
TEST_P(CordAppendBufferTest, GetAppendBufferOnEmptyCord) {
|
|
absl::Cord cord;
|
|
absl::CordBuffer buffer = GetAppendBuffer(cord, 1000);
|
|
EXPECT_GE(buffer.capacity(), 1000);
|
|
EXPECT_EQ(buffer.length(), 0);
|
|
}
|
|
|
|
TEST_P(CordAppendBufferTest, GetAppendBufferOnInlinedCord) {
|
|
static constexpr int kInlinedSize = sizeof(absl::CordBuffer) - 1;
|
|
for (int size : {6, kInlinedSize - 3, kInlinedSize - 2, 1000}) {
|
|
absl::Cord cord("Abc");
|
|
absl::CordBuffer buffer = GetAppendBuffer(cord, size, 1);
|
|
EXPECT_GE(buffer.capacity(), 3 + size);
|
|
EXPECT_EQ(buffer.length(), 3);
|
|
EXPECT_EQ(absl::string_view(buffer.data(), buffer.length()), "Abc");
|
|
EXPECT_TRUE(cord.empty());
|
|
}
|
|
}
|
|
|
|
TEST_P(CordAppendBufferTest, GetAppendBufferOnInlinedCordCapacityCloseToMax) {
|
|
// Cover the use case where we have a non empty inlined cord with some size
|
|
// 'n', and ask for something like 'uint64_max - k', assuming internal logic
|
|
// could overflow on 'uint64_max - k + size', and return a valid, but
|
|
// inefficiently smaller buffer if it would provide is the max allowed size.
|
|
for (size_t dist_from_max = 0; dist_from_max <= 4; ++dist_from_max) {
|
|
absl::Cord cord("Abc");
|
|
size_t size = std::numeric_limits<size_t>::max() - dist_from_max;
|
|
absl::CordBuffer buffer = GetAppendBuffer(cord, size, 1);
|
|
EXPECT_GE(buffer.capacity(), maximum_payload());
|
|
EXPECT_EQ(buffer.length(), 3);
|
|
EXPECT_EQ(absl::string_view(buffer.data(), buffer.length()), "Abc");
|
|
EXPECT_TRUE(cord.empty());
|
|
}
|
|
}
|
|
|
|
TEST_P(CordAppendBufferTest, GetAppendBufferOnFlat) {
|
|
// Create a cord with a single flat and extra capacity
|
|
absl::Cord cord;
|
|
absl::CordBuffer buffer = absl::CordBuffer::CreateWithDefaultLimit(500);
|
|
const size_t expected_capacity = buffer.capacity();
|
|
buffer.SetLength(3);
|
|
memcpy(buffer.data(), "Abc", 3);
|
|
cord.Append(std::move(buffer));
|
|
|
|
buffer = GetAppendBuffer(cord, 6);
|
|
EXPECT_EQ(buffer.capacity(), expected_capacity);
|
|
EXPECT_EQ(buffer.length(), 3);
|
|
EXPECT_EQ(absl::string_view(buffer.data(), buffer.length()), "Abc");
|
|
EXPECT_TRUE(cord.empty());
|
|
}
|
|
|
|
TEST_P(CordAppendBufferTest, GetAppendBufferOnFlatWithoutMinCapacity) {
|
|
// Create a cord with a single flat and extra capacity
|
|
absl::Cord cord;
|
|
absl::CordBuffer buffer = absl::CordBuffer::CreateWithDefaultLimit(500);
|
|
buffer.SetLength(30);
|
|
memset(buffer.data(), 'x', 30);
|
|
cord.Append(std::move(buffer));
|
|
|
|
buffer = GetAppendBuffer(cord, 1000, 900);
|
|
EXPECT_GE(buffer.capacity(), 1000);
|
|
EXPECT_EQ(buffer.length(), 0);
|
|
EXPECT_EQ(cord, std::string(30, 'x'));
|
|
}
|
|
|
|
TEST_P(CordAppendBufferTest, GetAppendBufferOnTree) {
|
|
RandomEngine rng;
|
|
for (int num_flats : {2, 3, 100}) {
|
|
// Create a cord with `num_flats` flats and extra capacity
|
|
absl::Cord cord;
|
|
std::string prefix;
|
|
std::string last;
|
|
for (int i = 0; i < num_flats - 1; ++i) {
|
|
prefix += last;
|
|
last = RandomLowercaseString(&rng, 10);
|
|
absl::CordBuffer buffer = absl::CordBuffer::CreateWithDefaultLimit(500);
|
|
buffer.SetLength(10);
|
|
memcpy(buffer.data(), last.data(), 10);
|
|
cord.Append(std::move(buffer));
|
|
}
|
|
absl::CordBuffer buffer = GetAppendBuffer(cord, 6);
|
|
EXPECT_GE(buffer.capacity(), 500);
|
|
EXPECT_EQ(buffer.length(), 10);
|
|
EXPECT_EQ(absl::string_view(buffer.data(), buffer.length()), last);
|
|
EXPECT_EQ(cord, prefix);
|
|
}
|
|
}
|
|
|
|
TEST_P(CordAppendBufferTest, GetAppendBufferOnTreeWithoutMinCapacity) {
|
|
absl::Cord cord;
|
|
for (int i = 0; i < 2; ++i) {
|
|
absl::CordBuffer buffer = absl::CordBuffer::CreateWithDefaultLimit(500);
|
|
buffer.SetLength(3);
|
|
memcpy(buffer.data(), i ? "def" : "Abc", 3);
|
|
cord.Append(std::move(buffer));
|
|
}
|
|
absl::CordBuffer buffer = GetAppendBuffer(cord, 1000, 900);
|
|
EXPECT_GE(buffer.capacity(), 1000);
|
|
EXPECT_EQ(buffer.length(), 0);
|
|
EXPECT_EQ(cord, "Abcdef");
|
|
}
|
|
|
|
TEST_P(CordAppendBufferTest, GetAppendBufferOnSubstring) {
|
|
// Create a large cord with a single flat and some extra capacity
|
|
absl::Cord cord;
|
|
absl::CordBuffer buffer = absl::CordBuffer::CreateWithDefaultLimit(500);
|
|
buffer.SetLength(450);
|
|
memset(buffer.data(), 'x', 450);
|
|
cord.Append(std::move(buffer));
|
|
cord.RemovePrefix(1);
|
|
|
|
// Deny on substring
|
|
buffer = GetAppendBuffer(cord, 6);
|
|
EXPECT_EQ(buffer.length(), 0);
|
|
EXPECT_EQ(cord, std::string(449, 'x'));
|
|
}
|
|
|
|
TEST_P(CordAppendBufferTest, GetAppendBufferOnSharedCord) {
|
|
// Create a shared cord with a single flat and extra capacity
|
|
absl::Cord cord;
|
|
absl::CordBuffer buffer = absl::CordBuffer::CreateWithDefaultLimit(500);
|
|
buffer.SetLength(3);
|
|
memcpy(buffer.data(), "Abc", 3);
|
|
cord.Append(std::move(buffer));
|
|
absl::Cord shared_cord = cord;
|
|
|
|
// Deny on flat
|
|
buffer = GetAppendBuffer(cord, 6);
|
|
EXPECT_EQ(buffer.length(), 0);
|
|
EXPECT_EQ(cord, "Abc");
|
|
|
|
buffer = absl::CordBuffer::CreateWithDefaultLimit(500);
|
|
buffer.SetLength(3);
|
|
memcpy(buffer.data(), "def", 3);
|
|
cord.Append(std::move(buffer));
|
|
shared_cord = cord;
|
|
|
|
// Deny on tree
|
|
buffer = GetAppendBuffer(cord, 6);
|
|
EXPECT_EQ(buffer.length(), 0);
|
|
EXPECT_EQ(cord, "Abcdef");
|
|
}
|
|
|
|
TEST_P(CordTest, TryFlatEmpty) {
|
|
absl::Cord c;
|
|
EXPECT_EQ(c.TryFlat(), "");
|
|
}
|
|
|
|
TEST_P(CordTest, TryFlatFlat) {
|
|
absl::Cord c("hello");
|
|
MaybeHarden(c);
|
|
EXPECT_EQ(c.TryFlat(), "hello");
|
|
}
|
|
|
|
TEST_P(CordTest, TryFlatSubstrInlined) {
|
|
absl::Cord c("hello");
|
|
c.RemovePrefix(1);
|
|
MaybeHarden(c);
|
|
EXPECT_EQ(c.TryFlat(), "ello");
|
|
}
|
|
|
|
TEST_P(CordTest, TryFlatSubstrFlat) {
|
|
absl::Cord c("longer than 15 bytes");
|
|
absl::Cord sub = absl::CordTestPeer::MakeSubstring(c, 1, c.size() - 1);
|
|
MaybeHarden(sub);
|
|
EXPECT_EQ(sub.TryFlat(), "onger than 15 bytes");
|
|
}
|
|
|
|
TEST_P(CordTest, TryFlatConcat) {
|
|
absl::Cord c = absl::MakeFragmentedCord({"hel", "lo"});
|
|
MaybeHarden(c);
|
|
EXPECT_EQ(c.TryFlat(), absl::nullopt);
|
|
}
|
|
|
|
TEST_P(CordTest, TryFlatExternal) {
|
|
absl::Cord c = absl::MakeCordFromExternal("hell", [](absl::string_view) {});
|
|
MaybeHarden(c);
|
|
EXPECT_EQ(c.TryFlat(), "hell");
|
|
}
|
|
|
|
TEST_P(CordTest, TryFlatSubstrExternal) {
|
|
absl::Cord c = absl::MakeCordFromExternal("hell", [](absl::string_view) {});
|
|
absl::Cord sub = absl::CordTestPeer::MakeSubstring(c, 1, c.size() - 1);
|
|
MaybeHarden(sub);
|
|
EXPECT_EQ(sub.TryFlat(), "ell");
|
|
}
|
|
|
|
TEST_P(CordTest, TryFlatCommonlyAssumedInvariants) {
|
|
// The behavior tested below is not part of the API contract of Cord, but it's
|
|
// something we intend to be true in our current implementation. This test
|
|
// exists to detect and prevent accidental breakage of the implementation.
|
|
absl::string_view fragments[] = {"A fragmented test",
|
|
" cord",
|
|
" to test subcords",
|
|
" of ",
|
|
"a",
|
|
" cord for",
|
|
" each chunk "
|
|
"returned by the ",
|
|
"iterator"};
|
|
absl::Cord c = absl::MakeFragmentedCord(fragments);
|
|
MaybeHarden(c);
|
|
int fragment = 0;
|
|
int offset = 0;
|
|
absl::Cord::CharIterator itc = c.char_begin();
|
|
for (absl::string_view sv : c.Chunks()) {
|
|
absl::string_view expected = fragments[fragment];
|
|
absl::Cord subcord1 = c.Subcord(offset, sv.length());
|
|
absl::Cord subcord2 = absl::Cord::AdvanceAndRead(&itc, sv.size());
|
|
EXPECT_EQ(subcord1.TryFlat(), expected);
|
|
EXPECT_EQ(subcord2.TryFlat(), expected);
|
|
++fragment;
|
|
offset += sv.length();
|
|
}
|
|
}
|
|
|
|
static bool IsFlat(const absl::Cord& c) {
|
|
return c.chunk_begin() == c.chunk_end() || ++c.chunk_begin() == c.chunk_end();
|
|
}
|
|
|
|
static void VerifyFlatten(absl::Cord c) {
|
|
std::string old_contents(c);
|
|
absl::string_view old_flat;
|
|
bool already_flat_and_non_empty = IsFlat(c) && !c.empty();
|
|
if (already_flat_and_non_empty) {
|
|
old_flat = *c.chunk_begin();
|
|
}
|
|
absl::string_view new_flat = c.Flatten();
|
|
|
|
// Verify that the contents of the flattened Cord are correct.
|
|
EXPECT_EQ(new_flat, old_contents);
|
|
EXPECT_EQ(std::string(c), old_contents);
|
|
|
|
// If the Cord contained data and was already flat, verify that the data
|
|
// wasn't copied.
|
|
if (already_flat_and_non_empty) {
|
|
EXPECT_EQ(old_flat.data(), new_flat.data())
|
|
<< "Allocated new memory even though the Cord was already flat.";
|
|
}
|
|
|
|
// Verify that the flattened Cord is in fact flat.
|
|
EXPECT_TRUE(IsFlat(c));
|
|
}
|
|
|
|
TEST_P(CordTest, Flatten) {
|
|
VerifyFlatten(absl::Cord());
|
|
VerifyFlatten(MaybeHardened(absl::Cord("small cord")));
|
|
VerifyFlatten(
|
|
MaybeHardened(absl::Cord("larger than small buffer optimization")));
|
|
VerifyFlatten(MaybeHardened(
|
|
absl::MakeFragmentedCord({"small ", "fragmented ", "cord"})));
|
|
|
|
// Test with a cord that is longer than the largest flat buffer
|
|
RandomEngine rng(GTEST_FLAG_GET(random_seed));
|
|
VerifyFlatten(MaybeHardened(absl::Cord(RandomLowercaseString(&rng, 8192))));
|
|
}
|
|
|
|
// Test data
|
|
namespace {
|
|
class TestData {
|
|
private:
|
|
std::vector<std::string> data_;
|
|
|
|
// Return a std::string of the specified length.
|
|
static std::string MakeString(int length) {
|
|
std::string result;
|
|
char buf[30];
|
|
snprintf(buf, sizeof(buf), "(%d)", length);
|
|
while (result.size() < length) {
|
|
result += buf;
|
|
}
|
|
result.resize(length);
|
|
return result;
|
|
}
|
|
|
|
public:
|
|
TestData() {
|
|
// short strings increasing in length by one
|
|
for (int i = 0; i < 30; i++) {
|
|
data_.push_back(MakeString(i));
|
|
}
|
|
|
|
// strings around half kMaxFlatLength
|
|
static const int kMaxFlatLength = 4096 - 9;
|
|
static const int kHalf = kMaxFlatLength / 2;
|
|
|
|
for (int i = -10; i <= +10; i++) {
|
|
data_.push_back(MakeString(kHalf + i));
|
|
}
|
|
|
|
for (int i = -10; i <= +10; i++) {
|
|
data_.push_back(MakeString(kMaxFlatLength + i));
|
|
}
|
|
}
|
|
|
|
size_t size() const { return data_.size(); }
|
|
const std::string& data(size_t i) const { return data_[i]; }
|
|
};
|
|
} // namespace
|
|
|
|
TEST_P(CordTest, MultipleLengths) {
|
|
TestData d;
|
|
for (size_t i = 0; i < d.size(); i++) {
|
|
std::string a = d.data(i);
|
|
|
|
{ // Construct from Cord
|
|
absl::Cord tmp(a);
|
|
absl::Cord x(tmp);
|
|
MaybeHarden(x);
|
|
EXPECT_EQ(a, std::string(x)) << "'" << a << "'";
|
|
}
|
|
|
|
{ // Construct from absl::string_view
|
|
absl::Cord x(a);
|
|
MaybeHarden(x);
|
|
EXPECT_EQ(a, std::string(x)) << "'" << a << "'";
|
|
}
|
|
|
|
{ // Append cord to self
|
|
absl::Cord self(a);
|
|
MaybeHarden(self);
|
|
self.Append(self);
|
|
EXPECT_EQ(a + a, std::string(self)) << "'" << a << "' + '" << a << "'";
|
|
}
|
|
|
|
{ // Prepend cord to self
|
|
absl::Cord self(a);
|
|
MaybeHarden(self);
|
|
self.Prepend(self);
|
|
EXPECT_EQ(a + a, std::string(self)) << "'" << a << "' + '" << a << "'";
|
|
}
|
|
|
|
// Try to append/prepend others
|
|
for (size_t j = 0; j < d.size(); j++) {
|
|
std::string b = d.data(j);
|
|
|
|
{ // CopyFrom Cord
|
|
absl::Cord x(a);
|
|
absl::Cord y(b);
|
|
MaybeHarden(x);
|
|
x = y;
|
|
EXPECT_EQ(b, std::string(x)) << "'" << a << "' + '" << b << "'";
|
|
}
|
|
|
|
{ // CopyFrom absl::string_view
|
|
absl::Cord x(a);
|
|
MaybeHarden(x);
|
|
x = b;
|
|
EXPECT_EQ(b, std::string(x)) << "'" << a << "' + '" << b << "'";
|
|
}
|
|
|
|
{ // Cord::Append(Cord)
|
|
absl::Cord x(a);
|
|
absl::Cord y(b);
|
|
MaybeHarden(x);
|
|
x.Append(y);
|
|
EXPECT_EQ(a + b, std::string(x)) << "'" << a << "' + '" << b << "'";
|
|
}
|
|
|
|
{ // Cord::Append(absl::string_view)
|
|
absl::Cord x(a);
|
|
MaybeHarden(x);
|
|
x.Append(b);
|
|
EXPECT_EQ(a + b, std::string(x)) << "'" << a << "' + '" << b << "'";
|
|
}
|
|
|
|
{ // Cord::Prepend(Cord)
|
|
absl::Cord x(a);
|
|
absl::Cord y(b);
|
|
MaybeHarden(x);
|
|
x.Prepend(y);
|
|
EXPECT_EQ(b + a, std::string(x)) << "'" << b << "' + '" << a << "'";
|
|
}
|
|
|
|
{ // Cord::Prepend(absl::string_view)
|
|
absl::Cord x(a);
|
|
MaybeHarden(x);
|
|
x.Prepend(b);
|
|
EXPECT_EQ(b + a, std::string(x)) << "'" << b << "' + '" << a << "'";
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
|
|
TEST_P(CordTest, RemoveSuffixWithExternalOrSubstring) {
|
|
absl::Cord cord = absl::MakeCordFromExternal(
|
|
"foo bar baz", [](absl::string_view s) { DoNothing(s, nullptr); });
|
|
EXPECT_EQ("foo bar baz", std::string(cord));
|
|
|
|
MaybeHarden(cord);
|
|
|
|
// This RemoveSuffix() will wrap the EXTERNAL node in a SUBSTRING node.
|
|
cord.RemoveSuffix(4);
|
|
EXPECT_EQ("foo bar", std::string(cord));
|
|
|
|
MaybeHarden(cord);
|
|
|
|
// This RemoveSuffix() will adjust the SUBSTRING node in-place.
|
|
cord.RemoveSuffix(4);
|
|
EXPECT_EQ("foo", std::string(cord));
|
|
}
|
|
|
|
TEST_P(CordTest, RemoveSuffixMakesZeroLengthNode) {
|
|
absl::Cord c;
|
|
c.Append(absl::Cord(std::string(100, 'x')));
|
|
absl::Cord other_ref = c; // Prevent inplace appends
|
|
MaybeHarden(c);
|
|
c.Append(absl::Cord(std::string(200, 'y')));
|
|
c.RemoveSuffix(200);
|
|
EXPECT_EQ(std::string(100, 'x'), std::string(c));
|
|
}
|
|
|
|
} // namespace
|
|
|
|
// CordSpliceTest contributed by hendrie.
|
|
namespace {
|
|
|
|
// Create a cord with an external memory block filled with 'z'
|
|
absl::Cord CordWithZedBlock(size_t size) {
|
|
char* data = new char[size];
|
|
if (size > 0) {
|
|
memset(data, 'z', size);
|
|
}
|
|
absl::Cord cord = absl::MakeCordFromExternal(
|
|
absl::string_view(data, size),
|
|
[](absl::string_view s) { delete[] s.data(); });
|
|
return cord;
|
|
}
|
|
|
|
// Establish that ZedBlock does what we think it does.
|
|
TEST_P(CordTest, CordSpliceTestZedBlock) {
|
|
absl::Cord blob = CordWithZedBlock(10);
|
|
MaybeHarden(blob);
|
|
EXPECT_EQ(10, blob.size());
|
|
std::string s;
|
|
absl::CopyCordToString(blob, &s);
|
|
EXPECT_EQ("zzzzzzzzzz", s);
|
|
}
|
|
|
|
TEST_P(CordTest, CordSpliceTestZedBlock0) {
|
|
absl::Cord blob = CordWithZedBlock(0);
|
|
MaybeHarden(blob);
|
|
EXPECT_EQ(0, blob.size());
|
|
std::string s;
|
|
absl::CopyCordToString(blob, &s);
|
|
EXPECT_EQ("", s);
|
|
}
|
|
|
|
TEST_P(CordTest, CordSpliceTestZedBlockSuffix1) {
|
|
absl::Cord blob = CordWithZedBlock(10);
|
|
MaybeHarden(blob);
|
|
EXPECT_EQ(10, blob.size());
|
|
absl::Cord suffix(blob);
|
|
suffix.RemovePrefix(9);
|
|
EXPECT_EQ(1, suffix.size());
|
|
std::string s;
|
|
absl::CopyCordToString(suffix, &s);
|
|
EXPECT_EQ("z", s);
|
|
}
|
|
|
|
// Remove all of a prefix block
|
|
TEST_P(CordTest, CordSpliceTestZedBlockSuffix0) {
|
|
absl::Cord blob = CordWithZedBlock(10);
|
|
MaybeHarden(blob);
|
|
EXPECT_EQ(10, blob.size());
|
|
absl::Cord suffix(blob);
|
|
suffix.RemovePrefix(10);
|
|
EXPECT_EQ(0, suffix.size());
|
|
std::string s;
|
|
absl::CopyCordToString(suffix, &s);
|
|
EXPECT_EQ("", s);
|
|
}
|
|
|
|
absl::Cord BigCord(size_t len, char v) {
|
|
std::string s(len, v);
|
|
return absl::Cord(s);
|
|
}
|
|
|
|
// Splice block into cord.
|
|
absl::Cord SpliceCord(const absl::Cord& blob, int64_t offset,
|
|
const absl::Cord& block) {
|
|
CHECK_GE(offset, 0);
|
|
CHECK_LE(static_cast<size_t>(offset) + block.size(), blob.size());
|
|
absl::Cord result(blob);
|
|
result.RemoveSuffix(blob.size() - offset);
|
|
result.Append(block);
|
|
absl::Cord suffix(blob);
|
|
suffix.RemovePrefix(offset + block.size());
|
|
result.Append(suffix);
|
|
CHECK_EQ(blob.size(), result.size());
|
|
return result;
|
|
}
|
|
|
|
// Taking an empty suffix of a block breaks appending.
|
|
TEST_P(CordTest, CordSpliceTestRemoveEntireBlock1) {
|
|
absl::Cord zero = CordWithZedBlock(10);
|
|
MaybeHarden(zero);
|
|
absl::Cord suffix(zero);
|
|
suffix.RemovePrefix(10);
|
|
absl::Cord result;
|
|
result.Append(suffix);
|
|
}
|
|
|
|
TEST_P(CordTest, CordSpliceTestRemoveEntireBlock2) {
|
|
absl::Cord zero = CordWithZedBlock(10);
|
|
MaybeHarden(zero);
|
|
absl::Cord prefix(zero);
|
|
prefix.RemoveSuffix(10);
|
|
absl::Cord suffix(zero);
|
|
suffix.RemovePrefix(10);
|
|
absl::Cord result(prefix);
|
|
result.Append(suffix);
|
|
}
|
|
|
|
TEST_P(CordTest, CordSpliceTestRemoveEntireBlock3) {
|
|
absl::Cord blob = CordWithZedBlock(10);
|
|
absl::Cord block = BigCord(10, 'b');
|
|
MaybeHarden(blob);
|
|
MaybeHarden(block);
|
|
blob = SpliceCord(blob, 0, block);
|
|
}
|
|
|
|
struct CordCompareTestCase {
|
|
template <typename LHS, typename RHS>
|
|
CordCompareTestCase(const LHS& lhs, const RHS& rhs, bool use_crc)
|
|
: lhs_cord(lhs), rhs_cord(rhs) {
|
|
if (use_crc) {
|
|
lhs_cord.SetExpectedChecksum(1);
|
|
}
|
|
}
|
|
|
|
absl::Cord lhs_cord;
|
|
absl::Cord rhs_cord;
|
|
};
|
|
|
|
const auto sign = [](int x) { return x == 0 ? 0 : (x > 0 ? 1 : -1); };
|
|
|
|
void VerifyComparison(const CordCompareTestCase& test_case) {
|
|
std::string lhs_string(test_case.lhs_cord);
|
|
std::string rhs_string(test_case.rhs_cord);
|
|
int expected = sign(lhs_string.compare(rhs_string));
|
|
EXPECT_EQ(expected, test_case.lhs_cord.Compare(test_case.rhs_cord))
|
|
<< "LHS=" << lhs_string << "; RHS=" << rhs_string;
|
|
EXPECT_EQ(expected, test_case.lhs_cord.Compare(rhs_string))
|
|
<< "LHS=" << lhs_string << "; RHS=" << rhs_string;
|
|
EXPECT_EQ(-expected, test_case.rhs_cord.Compare(test_case.lhs_cord))
|
|
<< "LHS=" << rhs_string << "; RHS=" << lhs_string;
|
|
EXPECT_EQ(-expected, test_case.rhs_cord.Compare(lhs_string))
|
|
<< "LHS=" << rhs_string << "; RHS=" << lhs_string;
|
|
}
|
|
|
|
TEST_P(CordTest, Compare) {
|
|
absl::Cord subcord("aaaaaBBBBBcccccDDDDD");
|
|
subcord = subcord.Subcord(3, 10);
|
|
|
|
absl::Cord tmp("aaaaaaaaaaaaaaaa");
|
|
tmp.Append("BBBBBBBBBBBBBBBB");
|
|
absl::Cord concat = absl::Cord("cccccccccccccccc");
|
|
concat.Append("DDDDDDDDDDDDDDDD");
|
|
concat.Prepend(tmp);
|
|
|
|
absl::Cord concat2("aaaaaaaaaaaaa");
|
|
concat2.Append("aaaBBBBBBBBBBBBBBBBccccc");
|
|
concat2.Append("cccccccccccDDDDDDDDDDDDDD");
|
|
concat2.Append("DD");
|
|
|
|
const bool use_crc = UseCrc();
|
|
|
|
std::vector<CordCompareTestCase> test_cases = {{
|
|
// Inline cords
|
|
{"abcdef", "abcdef", use_crc},
|
|
{"abcdef", "abcdee", use_crc},
|
|
{"abcdef", "abcdeg", use_crc},
|
|
{"bbcdef", "abcdef", use_crc},
|
|
{"bbcdef", "abcdeg", use_crc},
|
|
{"abcdefa", "abcdef", use_crc},
|
|
{"abcdef", "abcdefa", use_crc},
|
|
|
|
// Small flat cords
|
|
{"aaaaaBBBBBcccccDDDDD", "aaaaaBBBBBcccccDDDDD", use_crc},
|
|
{"aaaaaBBBBBcccccDDDDD", "aaaaaBBBBBxccccDDDDD", use_crc},
|
|
{"aaaaaBBBBBcxcccDDDDD", "aaaaaBBBBBcccccDDDDD", use_crc},
|
|
{"aaaaaBBBBBxccccDDDDD", "aaaaaBBBBBcccccDDDDX", use_crc},
|
|
{"aaaaaBBBBBcccccDDDDDa", "aaaaaBBBBBcccccDDDDD", use_crc},
|
|
{"aaaaaBBBBBcccccDDDDD", "aaaaaBBBBBcccccDDDDDa", use_crc},
|
|
|
|
// Subcords
|
|
{subcord, subcord, use_crc},
|
|
{subcord, "aaBBBBBccc", use_crc},
|
|
{subcord, "aaBBBBBccd", use_crc},
|
|
{subcord, "aaBBBBBccb", use_crc},
|
|
{subcord, "aaBBBBBxcb", use_crc},
|
|
{subcord, "aaBBBBBccca", use_crc},
|
|
{subcord, "aaBBBBBcc", use_crc},
|
|
|
|
// Concats
|
|
{concat, concat, use_crc},
|
|
{concat,
|
|
"aaaaaaaaaaaaaaaaBBBBBBBBBBBBBBBBccccccccccccccccDDDDDDDDDDDDDDDD",
|
|
use_crc},
|
|
{concat,
|
|
"aaaaaaaaaaaaaaaaBBBBBBBBBBBBBBBBcccccccccccccccxDDDDDDDDDDDDDDDD",
|
|
use_crc},
|
|
{concat,
|
|
"aaaaaaaaaaaaaaaaBBBBBBBBBBBBBBBBacccccccccccccccDDDDDDDDDDDDDDDD",
|
|
use_crc},
|
|
{concat,
|
|
"aaaaaaaaaaaaaaaaBBBBBBBBBBBBBBBBccccccccccccccccDDDDDDDDDDDDDDD",
|
|
use_crc},
|
|
{concat,
|
|
"aaaaaaaaaaaaaaaaBBBBBBBBBBBBBBBBccccccccccccccccDDDDDDDDDDDDDDDDe",
|
|
use_crc},
|
|
|
|
{concat, concat2, use_crc},
|
|
}};
|
|
|
|
for (const auto& tc : test_cases) {
|
|
VerifyComparison(tc);
|
|
}
|
|
}
|
|
|
|
TEST_P(CordTest, CompareAfterAssign) {
|
|
absl::Cord a("aaaaaa1111111");
|
|
absl::Cord b("aaaaaa2222222");
|
|
MaybeHarden(a);
|
|
a = "cccccc";
|
|
b = "cccccc";
|
|
EXPECT_EQ(a, b);
|
|
EXPECT_FALSE(a < b);
|
|
|
|
a = "aaaa";
|
|
b = "bbbbb";
|
|
a = "";
|
|
b = "";
|
|
EXPECT_EQ(a, b);
|
|
EXPECT_FALSE(a < b);
|
|
}
|
|
|
|
// Test CompareTo() and ComparePrefix() against string and substring
|
|
// comparison methods from basic_string.
|
|
static void TestCompare(const absl::Cord& c, const absl::Cord& d,
|
|
RandomEngine* rng) {
|
|
typedef std::basic_string<uint8_t> ustring;
|
|
ustring cs(reinterpret_cast<const uint8_t*>(std::string(c).data()), c.size());
|
|
ustring ds(reinterpret_cast<const uint8_t*>(std::string(d).data()), d.size());
|
|
// ustring comparison is ideal because we expect Cord comparisons to be
|
|
// based on unsigned byte comparisons regardless of whether char is signed.
|
|
int expected = sign(cs.compare(ds));
|
|
EXPECT_EQ(expected, sign(c.Compare(d))) << c << ", " << d;
|
|
}
|
|
|
|
TEST_P(CordTest, CompareComparisonIsUnsigned) {
|
|
RandomEngine rng(GTEST_FLAG_GET(random_seed));
|
|
std::uniform_int_distribution<uint32_t> uniform_uint8(0, 255);
|
|
char x = static_cast<char>(uniform_uint8(rng));
|
|
TestCompare(
|
|
absl::Cord(std::string(GetUniformRandomUpTo(&rng, 100), x)),
|
|
absl::Cord(std::string(GetUniformRandomUpTo(&rng, 100), x ^ 0x80)), &rng);
|
|
}
|
|
|
|
TEST_P(CordTest, CompareRandomComparisons) {
|
|
const int kIters = 5000;
|
|
RandomEngine rng(GTEST_FLAG_GET(random_seed));
|
|
|
|
int n = GetUniformRandomUpTo(&rng, 5000);
|
|
absl::Cord a[] = {MakeExternalCord(n),
|
|
absl::Cord("ant"),
|
|
absl::Cord("elephant"),
|
|
absl::Cord("giraffe"),
|
|
absl::Cord(std::string(GetUniformRandomUpTo(&rng, 100),
|
|
GetUniformRandomUpTo(&rng, 100))),
|
|
absl::Cord(""),
|
|
absl::Cord("x"),
|
|
absl::Cord("A"),
|
|
absl::Cord("B"),
|
|
absl::Cord("C")};
|
|
for (int i = 0; i < kIters; i++) {
|
|
absl::Cord c, d;
|
|
for (int j = 0; j < (i % 7) + 1; j++) {
|
|
c.Append(a[GetUniformRandomUpTo(&rng, ABSL_ARRAYSIZE(a))]);
|
|
d.Append(a[GetUniformRandomUpTo(&rng, ABSL_ARRAYSIZE(a))]);
|
|
}
|
|
std::bernoulli_distribution coin_flip(0.5);
|
|
MaybeHarden(c);
|
|
MaybeHarden(d);
|
|
TestCompare(coin_flip(rng) ? c : absl::Cord(std::string(c)),
|
|
coin_flip(rng) ? d : absl::Cord(std::string(d)), &rng);
|
|
}
|
|
}
|
|
|
|
template <typename T1, typename T2>
|
|
void CompareOperators() {
|
|
const T1 a("a");
|
|
const T2 b("b");
|
|
|
|
EXPECT_TRUE(a == a);
|
|
// For pointer type (i.e. `const char*`), operator== compares the address
|
|
// instead of the string, so `a == const char*("a")` isn't necessarily true.
|
|
EXPECT_TRUE(std::is_pointer<T1>::value || a == T1("a"));
|
|
EXPECT_TRUE(std::is_pointer<T2>::value || a == T2("a"));
|
|
EXPECT_FALSE(a == b);
|
|
|
|
EXPECT_TRUE(a != b);
|
|
EXPECT_FALSE(a != a);
|
|
|
|
EXPECT_TRUE(a < b);
|
|
EXPECT_FALSE(b < a);
|
|
|
|
EXPECT_TRUE(b > a);
|
|
EXPECT_FALSE(a > b);
|
|
|
|
EXPECT_TRUE(a >= a);
|
|
EXPECT_TRUE(b >= a);
|
|
EXPECT_FALSE(a >= b);
|
|
|
|
EXPECT_TRUE(a <= a);
|
|
EXPECT_TRUE(a <= b);
|
|
EXPECT_FALSE(b <= a);
|
|
}
|
|
|
|
TEST_P(CordTest, ComparisonOperators_Cord_Cord) {
|
|
CompareOperators<absl::Cord, absl::Cord>();
|
|
}
|
|
|
|
TEST_P(CordTest, ComparisonOperators_Cord_StringPiece) {
|
|
CompareOperators<absl::Cord, absl::string_view>();
|
|
}
|
|
|
|
TEST_P(CordTest, ComparisonOperators_StringPiece_Cord) {
|
|
CompareOperators<absl::string_view, absl::Cord>();
|
|
}
|
|
|
|
TEST_P(CordTest, ComparisonOperators_Cord_string) {
|
|
CompareOperators<absl::Cord, std::string>();
|
|
}
|
|
|
|
TEST_P(CordTest, ComparisonOperators_string_Cord) {
|
|
CompareOperators<std::string, absl::Cord>();
|
|
}
|
|
|
|
TEST_P(CordTest, ComparisonOperators_stdstring_Cord) {
|
|
CompareOperators<std::string, absl::Cord>();
|
|
}
|
|
|
|
TEST_P(CordTest, ComparisonOperators_Cord_stdstring) {
|
|
CompareOperators<absl::Cord, std::string>();
|
|
}
|
|
|
|
TEST_P(CordTest, ComparisonOperators_charstar_Cord) {
|
|
CompareOperators<const char*, absl::Cord>();
|
|
}
|
|
|
|
TEST_P(CordTest, ComparisonOperators_Cord_charstar) {
|
|
CompareOperators<absl::Cord, const char*>();
|
|
}
|
|
|
|
TEST_P(CordTest, ConstructFromExternalReleaserInvoked) {
|
|
// Empty external memory means the releaser should be called immediately.
|
|
{
|
|
bool invoked = false;
|
|
auto releaser = [&invoked](absl::string_view) { invoked = true; };
|
|
{
|
|
auto c = absl::MakeCordFromExternal("", releaser);
|
|
EXPECT_TRUE(invoked);
|
|
}
|
|
}
|
|
|
|
// If the size of the data is small enough, a future constructor
|
|
// implementation may copy the bytes and immediately invoke the releaser
|
|
// instead of creating an external node. We make a large dummy std::string to
|
|
// make this test independent of such an optimization.
|
|
std::string large_dummy(2048, 'c');
|
|
{
|
|
bool invoked = false;
|
|
auto releaser = [&invoked](absl::string_view) { invoked = true; };
|
|
{
|
|
auto c = absl::MakeCordFromExternal(large_dummy, releaser);
|
|
EXPECT_FALSE(invoked);
|
|
}
|
|
EXPECT_TRUE(invoked);
|
|
}
|
|
|
|
{
|
|
bool invoked = false;
|
|
auto releaser = [&invoked](absl::string_view) { invoked = true; };
|
|
{
|
|
absl::Cord copy;
|
|
{
|
|
auto c = absl::MakeCordFromExternal(large_dummy, releaser);
|
|
copy = c;
|
|
EXPECT_FALSE(invoked);
|
|
}
|
|
EXPECT_FALSE(invoked);
|
|
}
|
|
EXPECT_TRUE(invoked);
|
|
}
|
|
}
|
|
|
|
TEST_P(CordTest, ConstructFromExternalCompareContents) {
|
|
RandomEngine rng(GTEST_FLAG_GET(random_seed));
|
|
|
|
for (int length = 1; length <= 2048; length *= 2) {
|
|
std::string data = RandomLowercaseString(&rng, length);
|
|
auto* external = new std::string(data);
|
|
auto cord =
|
|
absl::MakeCordFromExternal(*external, [external](absl::string_view sv) {
|
|
EXPECT_EQ(external->data(), sv.data());
|
|
EXPECT_EQ(external->size(), sv.size());
|
|
delete external;
|
|
});
|
|
MaybeHarden(cord);
|
|
EXPECT_EQ(data, cord);
|
|
}
|
|
}
|
|
|
|
TEST_P(CordTest, ConstructFromExternalLargeReleaser) {
|
|
RandomEngine rng(GTEST_FLAG_GET(random_seed));
|
|
constexpr size_t kLength = 256;
|
|
std::string data = RandomLowercaseString(&rng, kLength);
|
|
std::array<char, kLength> data_array;
|
|
for (size_t i = 0; i < kLength; ++i) data_array[i] = data[i];
|
|
bool invoked = false;
|
|
auto releaser = [data_array, &invoked](absl::string_view data) {
|
|
EXPECT_EQ(data, absl::string_view(data_array.data(), data_array.size()));
|
|
invoked = true;
|
|
};
|
|
(void)MaybeHardened(absl::MakeCordFromExternal(data, releaser));
|
|
EXPECT_TRUE(invoked);
|
|
}
|
|
|
|
TEST_P(CordTest, ConstructFromExternalFunctionPointerReleaser) {
|
|
static absl::string_view data("hello world");
|
|
static bool invoked;
|
|
auto* releaser =
|
|
static_cast<void (*)(absl::string_view)>([](absl::string_view sv) {
|
|
EXPECT_EQ(data, sv);
|
|
invoked = true;
|
|
});
|
|
invoked = false;
|
|
(void)MaybeHardened(absl::MakeCordFromExternal(data, releaser));
|
|
EXPECT_TRUE(invoked);
|
|
|
|
invoked = false;
|
|
(void)MaybeHardened(absl::MakeCordFromExternal(data, *releaser));
|
|
EXPECT_TRUE(invoked);
|
|
}
|
|
|
|
TEST_P(CordTest, ConstructFromExternalMoveOnlyReleaser) {
|
|
struct Releaser {
|
|
explicit Releaser(bool* invoked) : invoked(invoked) {}
|
|
Releaser(Releaser&& other) noexcept : invoked(other.invoked) {}
|
|
void operator()(absl::string_view) const { *invoked = true; }
|
|
|
|
bool* invoked;
|
|
};
|
|
|
|
bool invoked = false;
|
|
(void)MaybeHardened(absl::MakeCordFromExternal("dummy", Releaser(&invoked)));
|
|
EXPECT_TRUE(invoked);
|
|
}
|
|
|
|
TEST_P(CordTest, ConstructFromExternalNoArgLambda) {
|
|
bool invoked = false;
|
|
(void)MaybeHardened(
|
|
absl::MakeCordFromExternal("dummy", [&invoked]() { invoked = true; }));
|
|
EXPECT_TRUE(invoked);
|
|
}
|
|
|
|
TEST_P(CordTest, ConstructFromExternalStringViewArgLambda) {
|
|
bool invoked = false;
|
|
(void)MaybeHardened(absl::MakeCordFromExternal(
|
|
"dummy", [&invoked](absl::string_view) { invoked = true; }));
|
|
EXPECT_TRUE(invoked);
|
|
}
|
|
|
|
TEST_P(CordTest, ConstructFromExternalNonTrivialReleaserDestructor) {
|
|
struct Releaser {
|
|
explicit Releaser(bool* destroyed) : destroyed(destroyed) {}
|
|
~Releaser() { *destroyed = true; }
|
|
void operator()(absl::string_view) const {}
|
|
|
|
bool* destroyed;
|
|
};
|
|
|
|
bool destroyed = false;
|
|
Releaser releaser(&destroyed);
|
|
(void)MaybeHardened(absl::MakeCordFromExternal("dummy", releaser));
|
|
EXPECT_TRUE(destroyed);
|
|
}
|
|
|
|
TEST_P(CordTest, ConstructFromExternalReferenceQualifierOverloads) {
|
|
enum InvokedAs { kMissing, kLValue, kRValue };
|
|
enum CopiedAs { kNone, kMove, kCopy };
|
|
struct Tracker {
|
|
CopiedAs copied_as = kNone;
|
|
InvokedAs invoked_as = kMissing;
|
|
|
|
void Record(InvokedAs rhs) {
|
|
ASSERT_EQ(invoked_as, kMissing);
|
|
invoked_as = rhs;
|
|
}
|
|
|
|
void Record(CopiedAs rhs) {
|
|
if (copied_as == kNone || rhs == kCopy) copied_as = rhs;
|
|
}
|
|
} tracker;
|
|
|
|
class Releaser {
|
|
public:
|
|
explicit Releaser(Tracker* tracker) : tr_(tracker) { *tracker = Tracker(); }
|
|
Releaser(Releaser&& rhs) : tr_(rhs.tr_) { tr_->Record(kMove); }
|
|
Releaser(const Releaser& rhs) : tr_(rhs.tr_) { tr_->Record(kCopy); }
|
|
|
|
void operator()(absl::string_view) & { tr_->Record(kLValue); }
|
|
void operator()(absl::string_view) && { tr_->Record(kRValue); }
|
|
|
|
private:
|
|
Tracker* tr_;
|
|
};
|
|
|
|
const Releaser releaser1(&tracker);
|
|
(void)MaybeHardened(absl::MakeCordFromExternal("", releaser1));
|
|
EXPECT_EQ(tracker.copied_as, kCopy);
|
|
EXPECT_EQ(tracker.invoked_as, kRValue);
|
|
|
|
const Releaser releaser2(&tracker);
|
|
(void)MaybeHardened(absl::MakeCordFromExternal("", releaser2));
|
|
EXPECT_EQ(tracker.copied_as, kCopy);
|
|
EXPECT_EQ(tracker.invoked_as, kRValue);
|
|
|
|
Releaser releaser3(&tracker);
|
|
(void)MaybeHardened(absl::MakeCordFromExternal("", std::move(releaser3)));
|
|
EXPECT_EQ(tracker.copied_as, kMove);
|
|
EXPECT_EQ(tracker.invoked_as, kRValue);
|
|
|
|
Releaser releaser4(&tracker);
|
|
(void)MaybeHardened(absl::MakeCordFromExternal("dummy", releaser4));
|
|
EXPECT_EQ(tracker.copied_as, kCopy);
|
|
EXPECT_EQ(tracker.invoked_as, kRValue);
|
|
|
|
const Releaser releaser5(&tracker);
|
|
(void)MaybeHardened(absl::MakeCordFromExternal("dummy", releaser5));
|
|
EXPECT_EQ(tracker.copied_as, kCopy);
|
|
EXPECT_EQ(tracker.invoked_as, kRValue);
|
|
|
|
Releaser releaser6(&tracker);
|
|
(void)MaybeHardened(absl::MakeCordFromExternal("foo", std::move(releaser6)));
|
|
EXPECT_EQ(tracker.copied_as, kMove);
|
|
EXPECT_EQ(tracker.invoked_as, kRValue);
|
|
}
|
|
|
|
TEST_P(CordTest, ExternalMemoryBasicUsage) {
|
|
static const char* strings[] = {"", "hello", "there"};
|
|
for (const char* str : strings) {
|
|
absl::Cord dst("(prefix)");
|
|
MaybeHarden(dst);
|
|
AddExternalMemory(str, &dst);
|
|
MaybeHarden(dst);
|
|
dst.Append("(suffix)");
|
|
EXPECT_EQ((std::string("(prefix)") + str + std::string("(suffix)")),
|
|
std::string(dst));
|
|
}
|
|
}
|
|
|
|
TEST_P(CordTest, ExternalMemoryRemovePrefixSuffix) {
|
|
// Exhaustively try all sub-strings.
|
|
absl::Cord cord = MakeComposite();
|
|
std::string s = std::string(cord);
|
|
for (int offset = 0; offset <= s.size(); offset++) {
|
|
for (int length = 0; length <= s.size() - offset; length++) {
|
|
absl::Cord result(cord);
|
|
MaybeHarden(result);
|
|
result.RemovePrefix(offset);
|
|
MaybeHarden(result);
|
|
result.RemoveSuffix(result.size() - length);
|
|
EXPECT_EQ(s.substr(offset, length), std::string(result))
|
|
<< offset << " " << length;
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST_P(CordTest, ExternalMemoryGet) {
|
|
absl::Cord cord("hello");
|
|
AddExternalMemory(" world!", &cord);
|
|
MaybeHarden(cord);
|
|
AddExternalMemory(" how are ", &cord);
|
|
cord.Append(" you?");
|
|
MaybeHarden(cord);
|
|
std::string s = std::string(cord);
|
|
for (int i = 0; i < s.size(); i++) {
|
|
EXPECT_EQ(s[i], cord[i]);
|
|
}
|
|
}
|
|
|
|
// CordMemoryUsage tests verify the correctness of the EstimatedMemoryUsage()
|
|
// We use whiteboxed expectations based on our knowledge of the layout and size
|
|
// of empty and inlined cords, and flat nodes.
|
|
|
|
constexpr auto kFairShare = absl::CordMemoryAccounting::kFairShare;
|
|
constexpr auto kTotalMorePrecise =
|
|
absl::CordMemoryAccounting::kTotalMorePrecise;
|
|
|
|
// Creates a cord of `n` `c` values, making sure no string stealing occurs.
|
|
absl::Cord MakeCord(size_t n, char c) {
|
|
const std::string s(n, c);
|
|
return absl::Cord(s);
|
|
}
|
|
|
|
TEST(CordTest, CordMemoryUsageEmpty) {
|
|
absl::Cord cord;
|
|
EXPECT_EQ(sizeof(absl::Cord), cord.EstimatedMemoryUsage());
|
|
EXPECT_EQ(sizeof(absl::Cord), cord.EstimatedMemoryUsage(kFairShare));
|
|
EXPECT_EQ(sizeof(absl::Cord), cord.EstimatedMemoryUsage(kTotalMorePrecise));
|
|
}
|
|
|
|
TEST(CordTest, CordMemoryUsageInlined) {
|
|
absl::Cord a("hello");
|
|
EXPECT_EQ(a.EstimatedMemoryUsage(), sizeof(absl::Cord));
|
|
EXPECT_EQ(a.EstimatedMemoryUsage(kFairShare), sizeof(absl::Cord));
|
|
EXPECT_EQ(a.EstimatedMemoryUsage(kTotalMorePrecise), sizeof(absl::Cord));
|
|
}
|
|
|
|
TEST(CordTest, CordMemoryUsageExternalMemory) {
|
|
absl::Cord cord;
|
|
AddExternalMemory(std::string(1000, 'x'), &cord);
|
|
const size_t expected =
|
|
sizeof(absl::Cord) + 1000 + sizeof(CordRepExternal) + sizeof(intptr_t);
|
|
EXPECT_EQ(cord.EstimatedMemoryUsage(), expected);
|
|
EXPECT_EQ(cord.EstimatedMemoryUsage(kFairShare), expected);
|
|
EXPECT_EQ(cord.EstimatedMemoryUsage(kTotalMorePrecise), expected);
|
|
}
|
|
|
|
TEST(CordTest, CordMemoryUsageFlat) {
|
|
absl::Cord cord = MakeCord(1000, 'a');
|
|
const size_t flat_size =
|
|
absl::CordTestPeer::Tree(cord)->flat()->AllocatedSize();
|
|
EXPECT_EQ(cord.EstimatedMemoryUsage(), sizeof(absl::Cord) + flat_size);
|
|
EXPECT_EQ(cord.EstimatedMemoryUsage(kFairShare),
|
|
sizeof(absl::Cord) + flat_size);
|
|
EXPECT_EQ(cord.EstimatedMemoryUsage(kTotalMorePrecise),
|
|
sizeof(absl::Cord) + flat_size);
|
|
}
|
|
|
|
TEST(CordTest, CordMemoryUsageSubStringSharedFlat) {
|
|
absl::Cord flat = MakeCord(2000, 'a');
|
|
const size_t flat_size =
|
|
absl::CordTestPeer::Tree(flat)->flat()->AllocatedSize();
|
|
absl::Cord cord = flat.Subcord(500, 1000);
|
|
EXPECT_EQ(cord.EstimatedMemoryUsage(),
|
|
sizeof(absl::Cord) + sizeof(CordRepSubstring) + flat_size);
|
|
EXPECT_EQ(cord.EstimatedMemoryUsage(kTotalMorePrecise),
|
|
sizeof(absl::Cord) + sizeof(CordRepSubstring) + flat_size);
|
|
EXPECT_EQ(cord.EstimatedMemoryUsage(kFairShare),
|
|
sizeof(absl::Cord) + sizeof(CordRepSubstring) + flat_size / 2);
|
|
}
|
|
|
|
TEST(CordTest, CordMemoryUsageFlatShared) {
|
|
absl::Cord shared = MakeCord(1000, 'a');
|
|
absl::Cord cord(shared);
|
|
const size_t flat_size =
|
|
absl::CordTestPeer::Tree(cord)->flat()->AllocatedSize();
|
|
EXPECT_EQ(cord.EstimatedMemoryUsage(), sizeof(absl::Cord) + flat_size);
|
|
EXPECT_EQ(cord.EstimatedMemoryUsage(kTotalMorePrecise),
|
|
sizeof(absl::Cord) + flat_size);
|
|
EXPECT_EQ(cord.EstimatedMemoryUsage(kFairShare),
|
|
sizeof(absl::Cord) + flat_size / 2);
|
|
}
|
|
|
|
TEST(CordTest, CordMemoryUsageFlatHardenedAndShared) {
|
|
absl::Cord shared = MakeCord(1000, 'a');
|
|
absl::Cord cord(shared);
|
|
const size_t flat_size =
|
|
absl::CordTestPeer::Tree(cord)->flat()->AllocatedSize();
|
|
cord.SetExpectedChecksum(1);
|
|
EXPECT_EQ(cord.EstimatedMemoryUsage(),
|
|
sizeof(absl::Cord) + sizeof(CordRepCrc) + flat_size);
|
|
EXPECT_EQ(cord.EstimatedMemoryUsage(kFairShare),
|
|
sizeof(absl::Cord) + sizeof(CordRepCrc) + flat_size / 2);
|
|
|
|
absl::Cord cord2(cord);
|
|
EXPECT_EQ(cord2.EstimatedMemoryUsage(),
|
|
sizeof(absl::Cord) + sizeof(CordRepCrc) + flat_size);
|
|
EXPECT_EQ(cord2.EstimatedMemoryUsage(kTotalMorePrecise),
|
|
sizeof(absl::Cord) + sizeof(CordRepCrc) + flat_size);
|
|
EXPECT_EQ(cord2.EstimatedMemoryUsage(kFairShare),
|
|
sizeof(absl::Cord) + (sizeof(CordRepCrc) + flat_size / 2) / 2);
|
|
}
|
|
|
|
TEST(CordTest, CordMemoryUsageBTree) {
|
|
absl::Cord cord1;
|
|
size_t flats1_size = 0;
|
|
absl::Cord flats1[4] = {MakeCord(1000, 'a'), MakeCord(1100, 'a'),
|
|
MakeCord(1200, 'a'), MakeCord(1300, 'a')};
|
|
for (absl::Cord flat : flats1) {
|
|
flats1_size += absl::CordTestPeer::Tree(flat)->flat()->AllocatedSize();
|
|
cord1.Append(std::move(flat));
|
|
}
|
|
|
|
// Make sure the created cord is a BTREE tree. Under some builds such as
|
|
// windows DLL, we may have ODR like effects on the flag, meaning the DLL
|
|
// code will run with the picked up default.
|
|
if (!absl::CordTestPeer::Tree(cord1)->IsBtree()) {
|
|
LOG(WARNING) << "Cord library code not respecting btree flag";
|
|
return;
|
|
}
|
|
|
|
size_t rep1_size = sizeof(CordRepBtree) + flats1_size;
|
|
size_t rep1_shared_size = sizeof(CordRepBtree) + flats1_size / 2;
|
|
|
|
EXPECT_EQ(cord1.EstimatedMemoryUsage(), sizeof(absl::Cord) + rep1_size);
|
|
EXPECT_EQ(cord1.EstimatedMemoryUsage(kTotalMorePrecise),
|
|
sizeof(absl::Cord) + rep1_size);
|
|
EXPECT_EQ(cord1.EstimatedMemoryUsage(kFairShare),
|
|
sizeof(absl::Cord) + rep1_shared_size);
|
|
|
|
absl::Cord cord2;
|
|
size_t flats2_size = 0;
|
|
absl::Cord flats2[4] = {MakeCord(600, 'a'), MakeCord(700, 'a'),
|
|
MakeCord(800, 'a'), MakeCord(900, 'a')};
|
|
for (absl::Cord& flat : flats2) {
|
|
flats2_size += absl::CordTestPeer::Tree(flat)->flat()->AllocatedSize();
|
|
cord2.Append(std::move(flat));
|
|
}
|
|
size_t rep2_size = sizeof(CordRepBtree) + flats2_size;
|
|
|
|
EXPECT_EQ(cord2.EstimatedMemoryUsage(), sizeof(absl::Cord) + rep2_size);
|
|
EXPECT_EQ(cord2.EstimatedMemoryUsage(kTotalMorePrecise),
|
|
sizeof(absl::Cord) + rep2_size);
|
|
EXPECT_EQ(cord2.EstimatedMemoryUsage(kFairShare),
|
|
sizeof(absl::Cord) + rep2_size);
|
|
|
|
absl::Cord cord(cord1);
|
|
cord.Append(std::move(cord2));
|
|
|
|
EXPECT_EQ(cord.EstimatedMemoryUsage(),
|
|
sizeof(absl::Cord) + sizeof(CordRepBtree) + rep1_size + rep2_size);
|
|
EXPECT_EQ(cord.EstimatedMemoryUsage(kTotalMorePrecise),
|
|
sizeof(absl::Cord) + sizeof(CordRepBtree) + rep1_size + rep2_size);
|
|
EXPECT_EQ(cord.EstimatedMemoryUsage(kFairShare),
|
|
sizeof(absl::Cord) + sizeof(CordRepBtree) + rep1_shared_size / 2 +
|
|
rep2_size);
|
|
}
|
|
|
|
// Regtest for a change that had to be rolled back because it expanded out
|
|
// of the InlineRep too soon, which was observable through MemoryUsage().
|
|
TEST_P(CordTest, CordMemoryUsageInlineRep) {
|
|
constexpr size_t kMaxInline = 15; // Cord::InlineRep::N
|
|
const std::string small_string(kMaxInline, 'x');
|
|
absl::Cord c1(small_string);
|
|
|
|
absl::Cord c2;
|
|
c2.Append(small_string);
|
|
EXPECT_EQ(c1, c2);
|
|
EXPECT_EQ(c1.EstimatedMemoryUsage(), c2.EstimatedMemoryUsage());
|
|
}
|
|
|
|
TEST_P(CordTest, CordMemoryUsageTotalMorePreciseMode) {
|
|
constexpr size_t kChunkSize = 2000;
|
|
std::string tmp_str(kChunkSize, 'x');
|
|
const absl::Cord flat(std::move(tmp_str));
|
|
|
|
// Construct `fragmented` with two references into the same
|
|
// underlying buffer shared with `flat`:
|
|
absl::Cord fragmented(flat);
|
|
fragmented.Append(flat);
|
|
|
|
// Memory usage of `flat`, minus the top-level Cord object:
|
|
const size_t flat_internal_usage =
|
|
flat.EstimatedMemoryUsage() - sizeof(absl::Cord);
|
|
|
|
// `fragmented` holds a Cord and a CordRepBtree. That tree points to two
|
|
// copies of flat's internals, which we expect to dedup:
|
|
EXPECT_EQ(fragmented.EstimatedMemoryUsage(kTotalMorePrecise),
|
|
sizeof(absl::Cord) +
|
|
sizeof(CordRepBtree) +
|
|
flat_internal_usage);
|
|
|
|
// This is a case where kTotal produces an overestimate:
|
|
EXPECT_EQ(fragmented.EstimatedMemoryUsage(),
|
|
sizeof(absl::Cord) +
|
|
sizeof(CordRepBtree) +
|
|
2 * flat_internal_usage);
|
|
}
|
|
|
|
TEST_P(CordTest, CordMemoryUsageTotalMorePreciseModeWithSubstring) {
|
|
constexpr size_t kChunkSize = 2000;
|
|
std::string tmp_str(kChunkSize, 'x');
|
|
const absl::Cord flat(std::move(tmp_str));
|
|
|
|
// Construct `fragmented` with two references into the same
|
|
// underlying buffer shared with `flat`.
|
|
//
|
|
// This time, each reference is through a Subcord():
|
|
absl::Cord fragmented;
|
|
fragmented.Append(flat.Subcord(1, kChunkSize - 2));
|
|
fragmented.Append(flat.Subcord(1, kChunkSize - 2));
|
|
|
|
// Memory usage of `flat`, minus the top-level Cord object:
|
|
const size_t flat_internal_usage =
|
|
flat.EstimatedMemoryUsage() - sizeof(absl::Cord);
|
|
|
|
// `fragmented` holds a Cord and a CordRepBtree. That tree points to two
|
|
// CordRepSubstrings, each pointing at flat's internals.
|
|
EXPECT_EQ(fragmented.EstimatedMemoryUsage(kTotalMorePrecise),
|
|
sizeof(absl::Cord) +
|
|
sizeof(CordRepBtree) +
|
|
2 * sizeof(CordRepSubstring) +
|
|
flat_internal_usage);
|
|
|
|
// This is a case where kTotal produces an overestimate:
|
|
EXPECT_EQ(fragmented.EstimatedMemoryUsage(),
|
|
sizeof(absl::Cord) +
|
|
sizeof(CordRepBtree) +
|
|
2 * sizeof(CordRepSubstring) +
|
|
2 * flat_internal_usage);
|
|
}
|
|
} // namespace
|
|
|
|
// Regtest for 7510292 (fix a bug introduced by 7465150)
|
|
TEST_P(CordTest, Concat_Append) {
|
|
// Create a rep of type CONCAT
|
|
absl::Cord s1("foobarbarbarbarbar");
|
|
MaybeHarden(s1);
|
|
s1.Append("abcdefgabcdefgabcdefgabcdefgabcdefgabcdefgabcdefg");
|
|
size_t size = s1.size();
|
|
|
|
// Create a copy of s1 and append to it.
|
|
absl::Cord s2 = s1;
|
|
MaybeHarden(s2);
|
|
s2.Append("x");
|
|
|
|
// 7465150 modifies s1 when it shouldn't.
|
|
EXPECT_EQ(s1.size(), size);
|
|
EXPECT_EQ(s2.size(), size + 1);
|
|
}
|
|
|
|
TEST_P(CordTest, DiabolicalGrowth) {
|
|
// This test exercises a diabolical Append(<one char>) on a cord, making the
|
|
// cord shared before each Append call resulting in a terribly fragmented
|
|
// resulting cord.
|
|
// TODO(b/183983616): Apply some minimum compaction when copying a shared
|
|
// source cord into a mutable copy for updates in CordRepRing.
|
|
RandomEngine rng(GTEST_FLAG_GET(random_seed));
|
|
const std::string expected = RandomLowercaseString(&rng, 5000);
|
|
absl::Cord cord;
|
|
for (char c : expected) {
|
|
absl::Cord shared(cord);
|
|
cord.Append(absl::string_view(&c, 1));
|
|
MaybeHarden(cord);
|
|
}
|
|
std::string value;
|
|
absl::CopyCordToString(cord, &value);
|
|
EXPECT_EQ(value, expected);
|
|
LOG(INFO) << "Diabolical size allocated = " << cord.EstimatedMemoryUsage();
|
|
}
|
|
|
|
// The following tests check support for >4GB cords in 64-bit binaries, and
|
|
// 2GB-4GB cords in 32-bit binaries. This function returns the large cord size
|
|
// that's appropriate for the binary.
|
|
|
|
// Construct a huge cord with the specified valid prefix.
|
|
static absl::Cord MakeHuge(absl::string_view prefix) {
|
|
absl::Cord cord;
|
|
if (sizeof(size_t) > 4) {
|
|
// In 64-bit binaries, test 64-bit Cord support.
|
|
const size_t size =
|
|
static_cast<size_t>(std::numeric_limits<uint32_t>::max()) + 314;
|
|
cord.Append(absl::MakeCordFromExternal(
|
|
absl::string_view(prefix.data(), size),
|
|
[](absl::string_view s) { DoNothing(s, nullptr); }));
|
|
} else {
|
|
// Cords are limited to 32-bit lengths in 32-bit binaries. The following
|
|
// tests check for use of "signed int" to represent Cord length/offset.
|
|
// However absl::string_view does not allow lengths >= (1u<<31), so we need
|
|
// to append in two parts;
|
|
const size_t s1 = (1u << 31) - 1;
|
|
// For shorter cord, `Append` copies the data rather than allocating a new
|
|
// node. The threshold is currently set to 511, so `s2` needs to be bigger
|
|
// to not trigger the copy.
|
|
const size_t s2 = 600;
|
|
cord.Append(absl::MakeCordFromExternal(
|
|
absl::string_view(prefix.data(), s1),
|
|
[](absl::string_view s) { DoNothing(s, nullptr); }));
|
|
cord.Append(absl::MakeCordFromExternal(
|
|
absl::string_view("", s2),
|
|
[](absl::string_view s) { DoNothing(s, nullptr); }));
|
|
}
|
|
return cord;
|
|
}
|
|
|
|
TEST_P(CordTest, HugeCord) {
|
|
absl::Cord cord = MakeHuge("huge cord");
|
|
MaybeHarden(cord);
|
|
|
|
const size_t acceptable_delta =
|
|
100 + (UseCrc() ? sizeof(absl::cord_internal::CordRepCrc) : 0);
|
|
EXPECT_LE(cord.size(), cord.EstimatedMemoryUsage());
|
|
EXPECT_GE(cord.size() + acceptable_delta, cord.EstimatedMemoryUsage());
|
|
}
|
|
|
|
// Tests that Append() works ok when handed a self reference
|
|
TEST_P(CordTest, AppendSelf) {
|
|
// Test the empty case.
|
|
absl::Cord empty;
|
|
MaybeHarden(empty);
|
|
empty.Append(empty);
|
|
ASSERT_EQ(empty, "");
|
|
|
|
// We run the test until data is ~16K
|
|
// This guarantees it covers small, medium and large data.
|
|
std::string control_data = "Abc";
|
|
absl::Cord data(control_data);
|
|
while (control_data.length() < 0x4000) {
|
|
MaybeHarden(data);
|
|
data.Append(data);
|
|
control_data.append(control_data);
|
|
ASSERT_EQ(control_data, data);
|
|
}
|
|
}
|
|
|
|
TEST_P(CordTest, MakeFragmentedCordFromInitializerList) {
|
|
absl::Cord fragmented =
|
|
absl::MakeFragmentedCord({"A ", "fragmented ", "Cord"});
|
|
|
|
MaybeHarden(fragmented);
|
|
|
|
EXPECT_EQ("A fragmented Cord", fragmented);
|
|
|
|
auto chunk_it = fragmented.chunk_begin();
|
|
|
|
ASSERT_TRUE(chunk_it != fragmented.chunk_end());
|
|
EXPECT_EQ("A ", *chunk_it);
|
|
|
|
ASSERT_TRUE(++chunk_it != fragmented.chunk_end());
|
|
EXPECT_EQ("fragmented ", *chunk_it);
|
|
|
|
ASSERT_TRUE(++chunk_it != fragmented.chunk_end());
|
|
EXPECT_EQ("Cord", *chunk_it);
|
|
|
|
ASSERT_TRUE(++chunk_it == fragmented.chunk_end());
|
|
}
|
|
|
|
TEST_P(CordTest, MakeFragmentedCordFromVector) {
|
|
std::vector<absl::string_view> chunks = {"A ", "fragmented ", "Cord"};
|
|
absl::Cord fragmented = absl::MakeFragmentedCord(chunks);
|
|
|
|
MaybeHarden(fragmented);
|
|
|
|
EXPECT_EQ("A fragmented Cord", fragmented);
|
|
|
|
auto chunk_it = fragmented.chunk_begin();
|
|
|
|
ASSERT_TRUE(chunk_it != fragmented.chunk_end());
|
|
EXPECT_EQ("A ", *chunk_it);
|
|
|
|
ASSERT_TRUE(++chunk_it != fragmented.chunk_end());
|
|
EXPECT_EQ("fragmented ", *chunk_it);
|
|
|
|
ASSERT_TRUE(++chunk_it != fragmented.chunk_end());
|
|
EXPECT_EQ("Cord", *chunk_it);
|
|
|
|
ASSERT_TRUE(++chunk_it == fragmented.chunk_end());
|
|
}
|
|
|
|
TEST_P(CordTest, CordChunkIteratorTraits) {
|
|
static_assert(std::is_copy_constructible<absl::Cord::ChunkIterator>::value,
|
|
"");
|
|
static_assert(std::is_copy_assignable<absl::Cord::ChunkIterator>::value, "");
|
|
|
|
// Move semantics to satisfy swappable via std::swap
|
|
static_assert(std::is_move_constructible<absl::Cord::ChunkIterator>::value,
|
|
"");
|
|
static_assert(std::is_move_assignable<absl::Cord::ChunkIterator>::value, "");
|
|
|
|
static_assert(
|
|
std::is_same<
|
|
std::iterator_traits<absl::Cord::ChunkIterator>::iterator_category,
|
|
std::input_iterator_tag>::value,
|
|
"");
|
|
static_assert(
|
|
std::is_same<std::iterator_traits<absl::Cord::ChunkIterator>::value_type,
|
|
absl::string_view>::value,
|
|
"");
|
|
static_assert(
|
|
std::is_same<
|
|
std::iterator_traits<absl::Cord::ChunkIterator>::difference_type,
|
|
ptrdiff_t>::value,
|
|
"");
|
|
static_assert(
|
|
std::is_same<std::iterator_traits<absl::Cord::ChunkIterator>::pointer,
|
|
const absl::string_view*>::value,
|
|
"");
|
|
static_assert(
|
|
std::is_same<std::iterator_traits<absl::Cord::ChunkIterator>::reference,
|
|
absl::string_view>::value,
|
|
"");
|
|
}
|
|
|
|
static void VerifyChunkIterator(const absl::Cord& cord,
|
|
size_t expected_chunks) {
|
|
EXPECT_EQ(cord.chunk_begin() == cord.chunk_end(), cord.empty()) << cord;
|
|
EXPECT_EQ(cord.chunk_begin() != cord.chunk_end(), !cord.empty());
|
|
|
|
absl::Cord::ChunkRange range = cord.Chunks();
|
|
EXPECT_EQ(range.begin() == range.end(), cord.empty());
|
|
EXPECT_EQ(range.begin() != range.end(), !cord.empty());
|
|
|
|
std::string content(cord);
|
|
size_t pos = 0;
|
|
auto pre_iter = cord.chunk_begin(), post_iter = cord.chunk_begin();
|
|
size_t n_chunks = 0;
|
|
while (pre_iter != cord.chunk_end() && post_iter != cord.chunk_end()) {
|
|
EXPECT_FALSE(pre_iter == cord.chunk_end()); // NOLINT: explicitly test ==
|
|
EXPECT_FALSE(post_iter == cord.chunk_end()); // NOLINT
|
|
|
|
EXPECT_EQ(pre_iter, post_iter);
|
|
EXPECT_EQ(*pre_iter, *post_iter);
|
|
|
|
EXPECT_EQ(pre_iter->data(), (*pre_iter).data());
|
|
EXPECT_EQ(pre_iter->size(), (*pre_iter).size());
|
|
|
|
absl::string_view chunk = *pre_iter;
|
|
EXPECT_FALSE(chunk.empty());
|
|
EXPECT_LE(pos + chunk.size(), content.size());
|
|
EXPECT_EQ(absl::string_view(content.c_str() + pos, chunk.size()), chunk);
|
|
|
|
int n_equal_iterators = 0;
|
|
for (absl::Cord::ChunkIterator it = range.begin(); it != range.end();
|
|
++it) {
|
|
n_equal_iterators += static_cast<int>(it == pre_iter);
|
|
}
|
|
EXPECT_EQ(n_equal_iterators, 1);
|
|
|
|
++pre_iter;
|
|
EXPECT_EQ(*post_iter++, chunk);
|
|
|
|
pos += chunk.size();
|
|
++n_chunks;
|
|
}
|
|
EXPECT_EQ(expected_chunks, n_chunks);
|
|
EXPECT_EQ(pos, content.size());
|
|
EXPECT_TRUE(pre_iter == cord.chunk_end()); // NOLINT: explicitly test ==
|
|
EXPECT_TRUE(post_iter == cord.chunk_end()); // NOLINT
|
|
}
|
|
|
|
TEST_P(CordTest, CordChunkIteratorOperations) {
|
|
absl::Cord empty_cord;
|
|
VerifyChunkIterator(empty_cord, 0);
|
|
|
|
absl::Cord small_buffer_cord("small cord");
|
|
MaybeHarden(small_buffer_cord);
|
|
VerifyChunkIterator(small_buffer_cord, 1);
|
|
|
|
absl::Cord flat_node_cord("larger than small buffer optimization");
|
|
MaybeHarden(flat_node_cord);
|
|
VerifyChunkIterator(flat_node_cord, 1);
|
|
|
|
VerifyChunkIterator(MaybeHardened(absl::MakeFragmentedCord(
|
|
{"a ", "small ", "fragmented ", "cord ", "for ",
|
|
"testing ", "chunk ", "iterations."})),
|
|
8);
|
|
|
|
absl::Cord reused_nodes_cord(std::string(40, 'c'));
|
|
reused_nodes_cord.Prepend(absl::Cord(std::string(40, 'b')));
|
|
MaybeHarden(reused_nodes_cord);
|
|
reused_nodes_cord.Prepend(absl::Cord(std::string(40, 'a')));
|
|
size_t expected_chunks = 3;
|
|
for (int i = 0; i < 8; ++i) {
|
|
reused_nodes_cord.Prepend(reused_nodes_cord);
|
|
MaybeHarden(reused_nodes_cord);
|
|
expected_chunks *= 2;
|
|
VerifyChunkIterator(reused_nodes_cord, expected_chunks);
|
|
}
|
|
|
|
RandomEngine rng(GTEST_FLAG_GET(random_seed));
|
|
absl::Cord flat_cord(RandomLowercaseString(&rng, 256));
|
|
absl::Cord subcords;
|
|
for (int i = 0; i < 128; ++i) subcords.Prepend(flat_cord.Subcord(i, 128));
|
|
VerifyChunkIterator(subcords, 128);
|
|
}
|
|
|
|
|
|
TEST_P(CordTest, AdvanceAndReadOnDataEdge) {
|
|
RandomEngine rng(GTEST_FLAG_GET(random_seed));
|
|
const std::string data = RandomLowercaseString(&rng, 2000);
|
|
for (bool as_flat : {true, false}) {
|
|
SCOPED_TRACE(as_flat ? "Flat" : "External");
|
|
|
|
absl::Cord cord =
|
|
as_flat ? absl::Cord(data)
|
|
: absl::MakeCordFromExternal(data, [](absl::string_view) {});
|
|
auto it = cord.Chars().begin();
|
|
#if !defined(NDEBUG) || ABSL_OPTION_HARDENED
|
|
EXPECT_DEATH_IF_SUPPORTED(cord.AdvanceAndRead(&it, 2001), ".*");
|
|
#endif
|
|
|
|
it = cord.Chars().begin();
|
|
absl::Cord frag = cord.AdvanceAndRead(&it, 2000);
|
|
EXPECT_EQ(frag, data);
|
|
EXPECT_TRUE(it == cord.Chars().end());
|
|
|
|
it = cord.Chars().begin();
|
|
frag = cord.AdvanceAndRead(&it, 200);
|
|
EXPECT_EQ(frag, data.substr(0, 200));
|
|
EXPECT_FALSE(it == cord.Chars().end());
|
|
|
|
frag = cord.AdvanceAndRead(&it, 1500);
|
|
EXPECT_EQ(frag, data.substr(200, 1500));
|
|
EXPECT_FALSE(it == cord.Chars().end());
|
|
|
|
frag = cord.AdvanceAndRead(&it, 300);
|
|
EXPECT_EQ(frag, data.substr(1700, 300));
|
|
EXPECT_TRUE(it == cord.Chars().end());
|
|
}
|
|
}
|
|
|
|
TEST_P(CordTest, AdvanceAndReadOnSubstringDataEdge) {
|
|
RandomEngine rng(GTEST_FLAG_GET(random_seed));
|
|
const std::string data = RandomLowercaseString(&rng, 2500);
|
|
for (bool as_flat : {true, false}) {
|
|
SCOPED_TRACE(as_flat ? "Flat" : "External");
|
|
|
|
absl::Cord cord =
|
|
as_flat ? absl::Cord(data)
|
|
: absl::MakeCordFromExternal(data, [](absl::string_view) {});
|
|
cord = cord.Subcord(200, 2000);
|
|
const std::string substr = data.substr(200, 2000);
|
|
|
|
auto it = cord.Chars().begin();
|
|
#if !defined(NDEBUG) || ABSL_OPTION_HARDENED
|
|
EXPECT_DEATH_IF_SUPPORTED(cord.AdvanceAndRead(&it, 2001), ".*");
|
|
#endif
|
|
|
|
it = cord.Chars().begin();
|
|
absl::Cord frag = cord.AdvanceAndRead(&it, 2000);
|
|
EXPECT_EQ(frag, substr);
|
|
EXPECT_TRUE(it == cord.Chars().end());
|
|
|
|
it = cord.Chars().begin();
|
|
frag = cord.AdvanceAndRead(&it, 200);
|
|
EXPECT_EQ(frag, substr.substr(0, 200));
|
|
EXPECT_FALSE(it == cord.Chars().end());
|
|
|
|
frag = cord.AdvanceAndRead(&it, 1500);
|
|
EXPECT_EQ(frag, substr.substr(200, 1500));
|
|
EXPECT_FALSE(it == cord.Chars().end());
|
|
|
|
frag = cord.AdvanceAndRead(&it, 300);
|
|
EXPECT_EQ(frag, substr.substr(1700, 300));
|
|
EXPECT_TRUE(it == cord.Chars().end());
|
|
}
|
|
}
|
|
|
|
TEST_P(CordTest, CharIteratorTraits) {
|
|
static_assert(std::is_copy_constructible<absl::Cord::CharIterator>::value,
|
|
"");
|
|
static_assert(std::is_copy_assignable<absl::Cord::CharIterator>::value, "");
|
|
|
|
// Move semantics to satisfy swappable via std::swap
|
|
static_assert(std::is_move_constructible<absl::Cord::CharIterator>::value,
|
|
"");
|
|
static_assert(std::is_move_assignable<absl::Cord::CharIterator>::value, "");
|
|
|
|
static_assert(
|
|
std::is_same<
|
|
std::iterator_traits<absl::Cord::CharIterator>::iterator_category,
|
|
std::input_iterator_tag>::value,
|
|
"");
|
|
static_assert(
|
|
std::is_same<std::iterator_traits<absl::Cord::CharIterator>::value_type,
|
|
char>::value,
|
|
"");
|
|
static_assert(
|
|
std::is_same<
|
|
std::iterator_traits<absl::Cord::CharIterator>::difference_type,
|
|
ptrdiff_t>::value,
|
|
"");
|
|
static_assert(
|
|
std::is_same<std::iterator_traits<absl::Cord::CharIterator>::pointer,
|
|
const char*>::value,
|
|
"");
|
|
static_assert(
|
|
std::is_same<std::iterator_traits<absl::Cord::CharIterator>::reference,
|
|
const char&>::value,
|
|
"");
|
|
}
|
|
|
|
static void VerifyCharIterator(const absl::Cord& cord) {
|
|
EXPECT_EQ(cord.char_begin() == cord.char_end(), cord.empty());
|
|
EXPECT_EQ(cord.char_begin() != cord.char_end(), !cord.empty());
|
|
|
|
absl::Cord::CharRange range = cord.Chars();
|
|
EXPECT_EQ(range.begin() == range.end(), cord.empty());
|
|
EXPECT_EQ(range.begin() != range.end(), !cord.empty());
|
|
|
|
size_t i = 0;
|
|
absl::Cord::CharIterator pre_iter = cord.char_begin();
|
|
absl::Cord::CharIterator post_iter = cord.char_begin();
|
|
std::string content(cord);
|
|
while (pre_iter != cord.char_end() && post_iter != cord.char_end()) {
|
|
EXPECT_FALSE(pre_iter == cord.char_end()); // NOLINT: explicitly test ==
|
|
EXPECT_FALSE(post_iter == cord.char_end()); // NOLINT
|
|
|
|
EXPECT_LT(i, cord.size());
|
|
EXPECT_EQ(content[i], *pre_iter);
|
|
|
|
EXPECT_EQ(pre_iter, post_iter);
|
|
EXPECT_EQ(*pre_iter, *post_iter);
|
|
EXPECT_EQ(&*pre_iter, &*post_iter);
|
|
|
|
EXPECT_EQ(&*pre_iter, pre_iter.operator->());
|
|
|
|
const char* character_address = &*pre_iter;
|
|
absl::Cord::CharIterator copy = pre_iter;
|
|
++copy;
|
|
EXPECT_EQ(character_address, &*pre_iter);
|
|
|
|
int n_equal_iterators = 0;
|
|
for (absl::Cord::CharIterator it = range.begin(); it != range.end(); ++it) {
|
|
n_equal_iterators += static_cast<int>(it == pre_iter);
|
|
}
|
|
EXPECT_EQ(n_equal_iterators, 1);
|
|
|
|
absl::Cord::CharIterator advance_iter = range.begin();
|
|
absl::Cord::Advance(&advance_iter, i);
|
|
EXPECT_EQ(pre_iter, advance_iter);
|
|
|
|
advance_iter = range.begin();
|
|
EXPECT_EQ(absl::Cord::AdvanceAndRead(&advance_iter, i), cord.Subcord(0, i));
|
|
EXPECT_EQ(pre_iter, advance_iter);
|
|
|
|
advance_iter = pre_iter;
|
|
absl::Cord::Advance(&advance_iter, cord.size() - i);
|
|
EXPECT_EQ(range.end(), advance_iter);
|
|
|
|
advance_iter = pre_iter;
|
|
EXPECT_EQ(absl::Cord::AdvanceAndRead(&advance_iter, cord.size() - i),
|
|
cord.Subcord(i, cord.size() - i));
|
|
EXPECT_EQ(range.end(), advance_iter);
|
|
|
|
++i;
|
|
++pre_iter;
|
|
post_iter++;
|
|
}
|
|
EXPECT_EQ(i, cord.size());
|
|
EXPECT_TRUE(pre_iter == cord.char_end()); // NOLINT: explicitly test ==
|
|
EXPECT_TRUE(post_iter == cord.char_end()); // NOLINT
|
|
|
|
absl::Cord::CharIterator zero_advanced_end = cord.char_end();
|
|
absl::Cord::Advance(&zero_advanced_end, 0);
|
|
EXPECT_EQ(zero_advanced_end, cord.char_end());
|
|
|
|
absl::Cord::CharIterator it = cord.char_begin();
|
|
for (absl::string_view chunk : cord.Chunks()) {
|
|
while (!chunk.empty()) {
|
|
EXPECT_EQ(absl::Cord::ChunkRemaining(it), chunk);
|
|
chunk.remove_prefix(1);
|
|
++it;
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST_P(CordTest, CharIteratorOperations) {
|
|
absl::Cord empty_cord;
|
|
VerifyCharIterator(empty_cord);
|
|
|
|
absl::Cord small_buffer_cord("small cord");
|
|
MaybeHarden(small_buffer_cord);
|
|
VerifyCharIterator(small_buffer_cord);
|
|
|
|
absl::Cord flat_node_cord("larger than small buffer optimization");
|
|
MaybeHarden(flat_node_cord);
|
|
VerifyCharIterator(flat_node_cord);
|
|
|
|
VerifyCharIterator(MaybeHardened(
|
|
absl::MakeFragmentedCord({"a ", "small ", "fragmented ", "cord ", "for ",
|
|
"testing ", "character ", "iteration."})));
|
|
|
|
absl::Cord reused_nodes_cord("ghi");
|
|
reused_nodes_cord.Prepend(absl::Cord("def"));
|
|
reused_nodes_cord.Prepend(absl::Cord("abc"));
|
|
for (int i = 0; i < 4; ++i) {
|
|
reused_nodes_cord.Prepend(reused_nodes_cord);
|
|
MaybeHarden(reused_nodes_cord);
|
|
VerifyCharIterator(reused_nodes_cord);
|
|
}
|
|
|
|
RandomEngine rng(GTEST_FLAG_GET(random_seed));
|
|
absl::Cord flat_cord(RandomLowercaseString(&rng, 256));
|
|
absl::Cord subcords;
|
|
for (int i = 0; i < 4; ++i) {
|
|
subcords.Prepend(flat_cord.Subcord(16 * i, 128));
|
|
MaybeHarden(subcords);
|
|
}
|
|
VerifyCharIterator(subcords);
|
|
}
|
|
|
|
TEST_P(CordTest, CharIteratorAdvanceAndRead) {
|
|
// Create a Cord holding 6 flats of 2500 bytes each, and then iterate over it
|
|
// reading 150, 1500, 2500 and 3000 bytes. This will result in all possible
|
|
// partial, full and straddled read combinations including reads below
|
|
// kMaxBytesToCopy. b/197776822 surfaced a bug for a specific partial, small
|
|
// read 'at end' on Cord which caused a failure on attempting to read past the
|
|
// end in CordRepBtreeReader which was not covered by any existing test.
|
|
constexpr int kBlocks = 6;
|
|
constexpr size_t kBlockSize = 2500;
|
|
constexpr size_t kChunkSize1 = 1500;
|
|
constexpr size_t kChunkSize2 = 2500;
|
|
constexpr size_t kChunkSize3 = 3000;
|
|
constexpr size_t kChunkSize4 = 150;
|
|
RandomEngine rng;
|
|
std::string data = RandomLowercaseString(&rng, kBlocks * kBlockSize);
|
|
absl::Cord cord;
|
|
for (int i = 0; i < kBlocks; ++i) {
|
|
const std::string block = data.substr(i * kBlockSize, kBlockSize);
|
|
cord.Append(absl::Cord(block));
|
|
}
|
|
|
|
MaybeHarden(cord);
|
|
|
|
for (size_t chunk_size :
|
|
{kChunkSize1, kChunkSize2, kChunkSize3, kChunkSize4}) {
|
|
absl::Cord::CharIterator it = cord.char_begin();
|
|
size_t offset = 0;
|
|
while (offset < data.length()) {
|
|
const size_t n = std::min<size_t>(data.length() - offset, chunk_size);
|
|
absl::Cord chunk = cord.AdvanceAndRead(&it, n);
|
|
ASSERT_EQ(chunk.size(), n);
|
|
ASSERT_EQ(chunk.Compare(data.substr(offset, n)), 0);
|
|
offset += n;
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST_P(CordTest, StreamingOutput) {
|
|
absl::Cord c =
|
|
absl::MakeFragmentedCord({"A ", "small ", "fragmented ", "Cord", "."});
|
|
MaybeHarden(c);
|
|
std::stringstream output;
|
|
output << c;
|
|
EXPECT_EQ("A small fragmented Cord.", output.str());
|
|
}
|
|
|
|
TEST_P(CordTest, ForEachChunk) {
|
|
for (int num_elements : {1, 10, 200}) {
|
|
SCOPED_TRACE(num_elements);
|
|
std::vector<std::string> cord_chunks;
|
|
for (int i = 0; i < num_elements; ++i) {
|
|
cord_chunks.push_back(absl::StrCat("[", i, "]"));
|
|
}
|
|
absl::Cord c = absl::MakeFragmentedCord(cord_chunks);
|
|
MaybeHarden(c);
|
|
|
|
std::vector<std::string> iterated_chunks;
|
|
absl::CordTestPeer::ForEachChunk(c,
|
|
[&iterated_chunks](absl::string_view sv) {
|
|
iterated_chunks.emplace_back(sv);
|
|
});
|
|
EXPECT_EQ(iterated_chunks, cord_chunks);
|
|
}
|
|
}
|
|
|
|
TEST_P(CordTest, SmallBufferAssignFromOwnData) {
|
|
constexpr size_t kMaxInline = 15;
|
|
std::string contents = "small buff cord";
|
|
EXPECT_EQ(contents.size(), kMaxInline);
|
|
for (size_t pos = 0; pos < contents.size(); ++pos) {
|
|
for (size_t count = contents.size() - pos; count > 0; --count) {
|
|
absl::Cord c(contents);
|
|
MaybeHarden(c);
|
|
absl::string_view flat = c.Flatten();
|
|
c = flat.substr(pos, count);
|
|
EXPECT_EQ(c, contents.substr(pos, count))
|
|
<< "pos = " << pos << "; count = " << count;
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST_P(CordTest, Format) {
|
|
absl::Cord c;
|
|
absl::Format(&c, "There were %04d little %s.", 3, "pigs");
|
|
EXPECT_EQ(c, "There were 0003 little pigs.");
|
|
MaybeHarden(c);
|
|
absl::Format(&c, "And %-3llx bad wolf!", 1);
|
|
MaybeHarden(c);
|
|
EXPECT_EQ(c, "There were 0003 little pigs.And 1 bad wolf!");
|
|
}
|
|
|
|
TEST_P(CordTest, Hardening) {
|
|
absl::Cord cord("hello");
|
|
MaybeHarden(cord);
|
|
|
|
// These statement should abort the program in all builds modes.
|
|
EXPECT_DEATH_IF_SUPPORTED(cord.RemovePrefix(6), "");
|
|
EXPECT_DEATH_IF_SUPPORTED(cord.RemoveSuffix(6), "");
|
|
|
|
bool test_hardening = false;
|
|
ABSL_HARDENING_ASSERT([&]() {
|
|
// This only runs when ABSL_HARDENING_ASSERT is active.
|
|
test_hardening = true;
|
|
return true;
|
|
}());
|
|
if (!test_hardening) return;
|
|
|
|
EXPECT_DEATH_IF_SUPPORTED(cord[5], "");
|
|
EXPECT_DEATH_IF_SUPPORTED(*cord.chunk_end(), "");
|
|
EXPECT_DEATH_IF_SUPPORTED(static_cast<void>(cord.chunk_end()->empty()), "");
|
|
EXPECT_DEATH_IF_SUPPORTED(++cord.chunk_end(), "");
|
|
}
|
|
|
|
// This test mimics a specific (and rare) application repeatedly splitting a
|
|
// cord, inserting (overwriting) a string value, and composing a new cord from
|
|
// the three pieces. This is hostile towards a Btree implementation: A split of
|
|
// a node at any level is likely to have the right-most edge of the left split,
|
|
// and the left-most edge of the right split shared. For example, splitting a
|
|
// leaf node with 6 edges will result likely in a 1-6, 2-5, 3-4, etc. split,
|
|
// sharing the 'split node'. When recomposing such nodes, we 'injected' an edge
|
|
// in that node. As this happens with some probability on each level of the
|
|
// tree, this will quickly grow the tree until it reaches maximum height.
|
|
TEST_P(CordTest, BtreeHostileSplitInsertJoin) {
|
|
absl::BitGen bitgen;
|
|
|
|
// Start with about 1GB of data
|
|
std::string data(1 << 10, 'x');
|
|
absl::Cord buffer(data);
|
|
absl::Cord cord;
|
|
for (int i = 0; i < 1000000; ++i) {
|
|
cord.Append(buffer);
|
|
}
|
|
|
|
for (int j = 0; j < 1000; ++j) {
|
|
MaybeHarden(cord);
|
|
size_t offset = absl::Uniform(bitgen, 0u, cord.size());
|
|
size_t length = absl::Uniform(bitgen, 100u, data.size());
|
|
if (cord.size() == offset) {
|
|
cord.Append(absl::string_view(data.data(), length));
|
|
} else {
|
|
absl::Cord suffix;
|
|
if (offset + length < cord.size()) {
|
|
suffix = cord;
|
|
suffix.RemovePrefix(offset + length);
|
|
}
|
|
if (cord.size() > offset) {
|
|
cord.RemoveSuffix(cord.size() - offset);
|
|
}
|
|
cord.Append(absl::string_view(data.data(), length));
|
|
if (!suffix.empty()) {
|
|
cord.Append(suffix);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
class AfterExitCordTester {
|
|
public:
|
|
bool Set(absl::Cord* cord, absl::string_view expected) {
|
|
cord_ = cord;
|
|
expected_ = expected;
|
|
return true;
|
|
}
|
|
|
|
~AfterExitCordTester() {
|
|
EXPECT_EQ(*cord_, expected_);
|
|
}
|
|
private:
|
|
absl::Cord* cord_;
|
|
absl::string_view expected_;
|
|
};
|
|
|
|
// Deliberately prevents the destructor for an absl::Cord from running. The cord
|
|
// is accessible via the cord member during the lifetime of the CordLeaker.
|
|
// After the CordLeaker is destroyed, pointers to the cord will remain valid
|
|
// until the CordLeaker's memory is deallocated.
|
|
struct CordLeaker {
|
|
union {
|
|
absl::Cord cord;
|
|
};
|
|
|
|
template <typename Str>
|
|
constexpr explicit CordLeaker(const Str& str) : cord(str) {}
|
|
|
|
~CordLeaker() {
|
|
// Don't do anything, including running cord's destructor. (cord's
|
|
// destructor won't run automatically because cord is hidden inside a
|
|
// union.)
|
|
}
|
|
};
|
|
|
|
template <typename Str>
|
|
void TestConstinitConstructor(Str) {
|
|
const auto expected = Str::value;
|
|
// Defined before `cord` to be destroyed after it.
|
|
static AfterExitCordTester exit_tester; // NOLINT
|
|
ABSL_CONST_INIT static CordLeaker cord_leaker(Str{}); // NOLINT
|
|
// cord_leaker is static, so this reference will remain valid through the end
|
|
// of program execution.
|
|
static absl::Cord& cord = cord_leaker.cord;
|
|
static bool init_exit_tester = exit_tester.Set(&cord, expected);
|
|
(void)init_exit_tester;
|
|
|
|
EXPECT_EQ(cord, expected);
|
|
// Copy the object and test the copy, and the original.
|
|
{
|
|
absl::Cord copy = cord;
|
|
EXPECT_EQ(copy, expected);
|
|
}
|
|
// The original still works
|
|
EXPECT_EQ(cord, expected);
|
|
|
|
// Try making adding more structure to the tree.
|
|
{
|
|
absl::Cord copy = cord;
|
|
std::string expected_copy(expected);
|
|
for (int i = 0; i < 10; ++i) {
|
|
copy.Append(cord);
|
|
absl::StrAppend(&expected_copy, expected);
|
|
EXPECT_EQ(copy, expected_copy);
|
|
}
|
|
}
|
|
|
|
// Make sure we are using the right branch during constant evaluation.
|
|
EXPECT_EQ(absl::CordTestPeer::IsTree(cord), cord.size() >= 16);
|
|
|
|
for (int i = 0; i < 10; ++i) {
|
|
// Make a few more Cords from the same global rep.
|
|
// This tests what happens when the refcount for it gets below 1.
|
|
EXPECT_EQ(expected, absl::Cord(Str{}));
|
|
}
|
|
}
|
|
|
|
constexpr int SimpleStrlen(const char* p) {
|
|
return *p ? 1 + SimpleStrlen(p + 1) : 0;
|
|
}
|
|
|
|
struct ShortView {
|
|
constexpr absl::string_view operator()() const {
|
|
return absl::string_view("SSO string", SimpleStrlen("SSO string"));
|
|
}
|
|
};
|
|
|
|
struct LongView {
|
|
constexpr absl::string_view operator()() const {
|
|
return absl::string_view("String that does not fit SSO.",
|
|
SimpleStrlen("String that does not fit SSO."));
|
|
}
|
|
};
|
|
|
|
|
|
TEST_P(CordTest, ConstinitConstructor) {
|
|
TestConstinitConstructor(
|
|
absl::strings_internal::MakeStringConstant(ShortView{}));
|
|
TestConstinitConstructor(
|
|
absl::strings_internal::MakeStringConstant(LongView{}));
|
|
}
|
|
|
|
namespace {
|
|
|
|
// Test helper that generates a populated cord for future manipulation.
|
|
//
|
|
// By test convention, all generated cords begin with the characters "abcde" at
|
|
// the start of the first chunk.
|
|
class PopulatedCordFactory {
|
|
public:
|
|
constexpr PopulatedCordFactory(absl::string_view name,
|
|
absl::Cord (*generator)())
|
|
: name_(name), generator_(generator) {}
|
|
|
|
absl::string_view Name() const { return name_; }
|
|
absl::Cord Generate() const { return generator_(); }
|
|
|
|
private:
|
|
absl::string_view name_;
|
|
absl::Cord (*generator_)();
|
|
};
|
|
|
|
// clang-format off
|
|
// This array is constant-initialized in conformant compilers.
|
|
PopulatedCordFactory cord_factories[] = {
|
|
{"sso", [] { return absl::Cord("abcde"); }},
|
|
{"flat", [] {
|
|
// Too large to live in SSO space, but small enough to be a simple FLAT.
|
|
absl::Cord flat(absl::StrCat("abcde", std::string(1000, 'x')));
|
|
flat.Flatten();
|
|
return flat;
|
|
}},
|
|
{"external", [] {
|
|
// A cheat: we are using a string literal as the external storage, so a
|
|
// no-op releaser is correct here.
|
|
return absl::MakeCordFromExternal("abcde External!", []{});
|
|
}},
|
|
{"external substring", [] {
|
|
// A cheat: we are using a string literal as the external storage, so a
|
|
// no-op releaser is correct here.
|
|
absl::Cord ext = absl::MakeCordFromExternal("-abcde External!", []{});
|
|
return absl::CordTestPeer::MakeSubstring(ext, 1, ext.size() - 1);
|
|
}},
|
|
{"substring", [] {
|
|
absl::Cord flat(absl::StrCat("-abcde", std::string(1000, 'x')));
|
|
flat.Flatten();
|
|
return flat.Subcord(1, 998);
|
|
}},
|
|
{"fragmented", [] {
|
|
std::string fragment = absl::StrCat("abcde", std::string(195, 'x'));
|
|
std::vector<std::string> fragments(200, fragment);
|
|
absl::Cord cord = absl::MakeFragmentedCord(fragments);
|
|
assert(cord.size() == 40000);
|
|
return cord;
|
|
}},
|
|
};
|
|
// clang-format on
|
|
|
|
// Test helper that can mutate a cord, and possibly undo the mutation, for
|
|
// testing.
|
|
class CordMutator {
|
|
public:
|
|
constexpr CordMutator(absl::string_view name, void (*mutate)(absl::Cord&),
|
|
void (*undo)(absl::Cord&) = nullptr)
|
|
: name_(name), mutate_(mutate), undo_(undo) {}
|
|
|
|
absl::string_view Name() const { return name_; }
|
|
void Mutate(absl::Cord& cord) const { mutate_(cord); }
|
|
bool CanUndo() const { return undo_ != nullptr; }
|
|
void Undo(absl::Cord& cord) const { undo_(cord); }
|
|
|
|
private:
|
|
absl::string_view name_;
|
|
void (*mutate_)(absl::Cord&);
|
|
void (*undo_)(absl::Cord&);
|
|
};
|
|
|
|
// clang-format off
|
|
// This array is constant-initialized in conformant compilers.
|
|
CordMutator cord_mutators[] = {
|
|
{"clear", [](absl::Cord& c) { c.Clear(); }},
|
|
{"overwrite", [](absl::Cord& c) { c = "overwritten"; }},
|
|
{
|
|
"append string",
|
|
[](absl::Cord& c) { c.Append("0123456789"); },
|
|
[](absl::Cord& c) { c.RemoveSuffix(10); }
|
|
},
|
|
{
|
|
"append cord",
|
|
[](absl::Cord& c) {
|
|
c.Append(absl::MakeFragmentedCord({"12345", "67890"}));
|
|
},
|
|
[](absl::Cord& c) { c.RemoveSuffix(10); }
|
|
},
|
|
{
|
|
"append checksummed cord",
|
|
[](absl::Cord& c) {
|
|
absl::Cord to_append = absl::MakeFragmentedCord({"12345", "67890"});
|
|
to_append.SetExpectedChecksum(999);
|
|
c.Append(to_append);
|
|
},
|
|
[](absl::Cord& c) { c.RemoveSuffix(10); }
|
|
},
|
|
{
|
|
"append self",
|
|
[](absl::Cord& c) { c.Append(c); },
|
|
[](absl::Cord& c) { c.RemoveSuffix(c.size() / 2); }
|
|
},
|
|
{
|
|
"append empty string",
|
|
[](absl::Cord& c) { c.Append(""); },
|
|
[](absl::Cord& c) { }
|
|
},
|
|
{
|
|
"append empty cord",
|
|
[](absl::Cord& c) { c.Append(absl::Cord()); },
|
|
[](absl::Cord& c) { }
|
|
},
|
|
{
|
|
"append empty checksummed cord",
|
|
[](absl::Cord& c) {
|
|
absl::Cord to_append;
|
|
to_append.SetExpectedChecksum(999);
|
|
c.Append(to_append);
|
|
},
|
|
[](absl::Cord& c) { }
|
|
},
|
|
{
|
|
"prepend string",
|
|
[](absl::Cord& c) { c.Prepend("9876543210"); },
|
|
[](absl::Cord& c) { c.RemovePrefix(10); }
|
|
},
|
|
{
|
|
"prepend cord",
|
|
[](absl::Cord& c) {
|
|
c.Prepend(absl::MakeFragmentedCord({"98765", "43210"}));
|
|
},
|
|
[](absl::Cord& c) { c.RemovePrefix(10); }
|
|
},
|
|
{
|
|
"prepend checksummed cord",
|
|
[](absl::Cord& c) {
|
|
absl::Cord to_prepend = absl::MakeFragmentedCord({"98765", "43210"});
|
|
to_prepend.SetExpectedChecksum(999);
|
|
c.Prepend(to_prepend);
|
|
},
|
|
[](absl::Cord& c) { c.RemovePrefix(10); }
|
|
},
|
|
{
|
|
"prepend empty string",
|
|
[](absl::Cord& c) { c.Prepend(""); },
|
|
[](absl::Cord& c) { }
|
|
},
|
|
{
|
|
"prepend empty cord",
|
|
[](absl::Cord& c) { c.Prepend(absl::Cord()); },
|
|
[](absl::Cord& c) { }
|
|
},
|
|
{
|
|
"prepend empty checksummed cord",
|
|
[](absl::Cord& c) {
|
|
absl::Cord to_prepend;
|
|
to_prepend.SetExpectedChecksum(999);
|
|
c.Prepend(to_prepend);
|
|
},
|
|
[](absl::Cord& c) { }
|
|
},
|
|
{
|
|
"prepend self",
|
|
[](absl::Cord& c) { c.Prepend(c); },
|
|
[](absl::Cord& c) { c.RemovePrefix(c.size() / 2); }
|
|
},
|
|
{"remove prefix", [](absl::Cord& c) { c.RemovePrefix(c.size() / 2); }},
|
|
{"remove suffix", [](absl::Cord& c) { c.RemoveSuffix(c.size() / 2); }},
|
|
{"remove 0-prefix", [](absl::Cord& c) { c.RemovePrefix(0); }},
|
|
{"remove 0-suffix", [](absl::Cord& c) { c.RemoveSuffix(0); }},
|
|
{"subcord", [](absl::Cord& c) { c = c.Subcord(1, c.size() - 2); }},
|
|
{
|
|
"swap inline",
|
|
[](absl::Cord& c) {
|
|
absl::Cord other("swap");
|
|
c.swap(other);
|
|
}
|
|
},
|
|
{
|
|
"swap tree",
|
|
[](absl::Cord& c) {
|
|
absl::Cord other(std::string(10000, 'x'));
|
|
c.swap(other);
|
|
}
|
|
},
|
|
};
|
|
// clang-format on
|
|
} // namespace
|
|
|
|
TEST_P(CordTest, ExpectedChecksum) {
|
|
for (const PopulatedCordFactory& factory : cord_factories) {
|
|
SCOPED_TRACE(factory.Name());
|
|
for (bool shared : {false, true}) {
|
|
SCOPED_TRACE(shared);
|
|
|
|
absl::Cord shared_cord_source = factory.Generate();
|
|
auto make_instance = [=] {
|
|
return shared ? shared_cord_source : factory.Generate();
|
|
};
|
|
|
|
const absl::Cord base_value = factory.Generate();
|
|
const std::string base_value_as_string(factory.Generate().Flatten());
|
|
|
|
absl::Cord c1 = make_instance();
|
|
EXPECT_FALSE(c1.ExpectedChecksum().has_value());
|
|
|
|
// Setting an expected checksum works, and retains the cord's bytes
|
|
c1.SetExpectedChecksum(12345);
|
|
EXPECT_EQ(c1.ExpectedChecksum().value_or(0), 12345);
|
|
EXPECT_EQ(c1, base_value);
|
|
|
|
// Test that setting an expected checksum again doesn't crash or leak
|
|
// memory.
|
|
c1.SetExpectedChecksum(12345);
|
|
EXPECT_EQ(c1.ExpectedChecksum().value_or(0), 12345);
|
|
EXPECT_EQ(c1, base_value);
|
|
|
|
// CRC persists through copies, assignments, and moves:
|
|
absl::Cord c1_copy_construct = c1;
|
|
EXPECT_EQ(c1_copy_construct.ExpectedChecksum().value_or(0), 12345);
|
|
|
|
absl::Cord c1_copy_assign;
|
|
c1_copy_assign = c1;
|
|
EXPECT_EQ(c1_copy_assign.ExpectedChecksum().value_or(0), 12345);
|
|
|
|
absl::Cord c1_move(std::move(c1_copy_assign));
|
|
EXPECT_EQ(c1_move.ExpectedChecksum().value_or(0), 12345);
|
|
|
|
EXPECT_EQ(c1.ExpectedChecksum().value_or(0), 12345);
|
|
|
|
// A CRC Cord compares equal to its non-CRC value.
|
|
EXPECT_EQ(c1, make_instance());
|
|
|
|
for (const CordMutator& mutator : cord_mutators) {
|
|
SCOPED_TRACE(mutator.Name());
|
|
|
|
// Test that mutating a cord removes its stored checksum
|
|
absl::Cord c2 = make_instance();
|
|
c2.SetExpectedChecksum(24680);
|
|
|
|
mutator.Mutate(c2);
|
|
|
|
if (c1 == c2) {
|
|
// Not a mutation (for example, appending the empty string).
|
|
// Whether the checksum is removed is not defined.
|
|
continue;
|
|
}
|
|
|
|
EXPECT_EQ(c2.ExpectedChecksum(), absl::nullopt);
|
|
|
|
if (mutator.CanUndo()) {
|
|
// Undoing an operation should not restore the checksum
|
|
mutator.Undo(c2);
|
|
EXPECT_EQ(c2, base_value);
|
|
EXPECT_EQ(c2.ExpectedChecksum(), absl::nullopt);
|
|
}
|
|
}
|
|
|
|
absl::Cord c3 = make_instance();
|
|
c3.SetExpectedChecksum(999);
|
|
const absl::Cord& cc3 = c3;
|
|
|
|
// Test that all cord reading operations function in the face of an
|
|
// expected checksum.
|
|
|
|
// Test data precondition
|
|
ASSERT_TRUE(cc3.StartsWith("abcde"));
|
|
|
|
EXPECT_EQ(cc3.size(), base_value_as_string.size());
|
|
EXPECT_FALSE(cc3.empty());
|
|
EXPECT_EQ(cc3.Compare(base_value), 0);
|
|
EXPECT_EQ(cc3.Compare(base_value_as_string), 0);
|
|
EXPECT_EQ(cc3.Compare("wxyz"), -1);
|
|
EXPECT_EQ(cc3.Compare(absl::Cord("wxyz")), -1);
|
|
EXPECT_EQ(cc3.Compare("aaaa"), 1);
|
|
EXPECT_EQ(cc3.Compare(absl::Cord("aaaa")), 1);
|
|
EXPECT_EQ(absl::Cord("wxyz").Compare(cc3), 1);
|
|
EXPECT_EQ(absl::Cord("aaaa").Compare(cc3), -1);
|
|
EXPECT_TRUE(cc3.StartsWith("abcd"));
|
|
EXPECT_EQ(std::string(cc3), base_value_as_string);
|
|
|
|
std::string dest;
|
|
absl::CopyCordToString(cc3, &dest);
|
|
EXPECT_EQ(dest, base_value_as_string);
|
|
|
|
bool first_pass = true;
|
|
for (absl::string_view chunk : cc3.Chunks()) {
|
|
if (first_pass) {
|
|
EXPECT_TRUE(absl::StartsWith(chunk, "abcde"));
|
|
}
|
|
first_pass = false;
|
|
}
|
|
first_pass = true;
|
|
for (char ch : cc3.Chars()) {
|
|
if (first_pass) {
|
|
EXPECT_EQ(ch, 'a');
|
|
}
|
|
first_pass = false;
|
|
}
|
|
EXPECT_TRUE(absl::StartsWith(*cc3.chunk_begin(), "abcde"));
|
|
EXPECT_EQ(*cc3.char_begin(), 'a');
|
|
|
|
auto char_it = cc3.char_begin();
|
|
absl::Cord::Advance(&char_it, 2);
|
|
EXPECT_EQ(absl::Cord::AdvanceAndRead(&char_it, 2), "cd");
|
|
EXPECT_EQ(*char_it, 'e');
|
|
char_it = cc3.char_begin();
|
|
absl::Cord::Advance(&char_it, 2);
|
|
EXPECT_TRUE(absl::StartsWith(absl::Cord::ChunkRemaining(char_it), "cde"));
|
|
|
|
EXPECT_EQ(cc3[0], 'a');
|
|
EXPECT_EQ(cc3[4], 'e');
|
|
EXPECT_EQ(absl::HashOf(cc3), absl::HashOf(base_value));
|
|
EXPECT_EQ(absl::HashOf(cc3), absl::HashOf(base_value_as_string));
|
|
}
|
|
}
|
|
}
|
|
|
|
// Test the special cases encountered with an empty checksummed cord.
|
|
TEST_P(CordTest, ChecksummedEmptyCord) {
|
|
absl::Cord c1;
|
|
EXPECT_FALSE(c1.ExpectedChecksum().has_value());
|
|
|
|
// Setting an expected checksum works.
|
|
c1.SetExpectedChecksum(12345);
|
|
EXPECT_EQ(c1.ExpectedChecksum().value_or(0), 12345);
|
|
EXPECT_EQ(c1, "");
|
|
EXPECT_TRUE(c1.empty());
|
|
|
|
// Test that setting an expected checksum again doesn't crash or leak memory.
|
|
c1.SetExpectedChecksum(12345);
|
|
EXPECT_EQ(c1.ExpectedChecksum().value_or(0), 12345);
|
|
EXPECT_EQ(c1, "");
|
|
EXPECT_TRUE(c1.empty());
|
|
|
|
// CRC persists through copies, assignments, and moves:
|
|
absl::Cord c1_copy_construct = c1;
|
|
EXPECT_EQ(c1_copy_construct.ExpectedChecksum().value_or(0), 12345);
|
|
|
|
absl::Cord c1_copy_assign;
|
|
c1_copy_assign = c1;
|
|
EXPECT_EQ(c1_copy_assign.ExpectedChecksum().value_or(0), 12345);
|
|
|
|
absl::Cord c1_move(std::move(c1_copy_assign));
|
|
EXPECT_EQ(c1_move.ExpectedChecksum().value_or(0), 12345);
|
|
|
|
EXPECT_EQ(c1.ExpectedChecksum().value_or(0), 12345);
|
|
|
|
// A CRC Cord compares equal to its non-CRC value.
|
|
EXPECT_EQ(c1, absl::Cord());
|
|
|
|
for (const CordMutator& mutator : cord_mutators) {
|
|
SCOPED_TRACE(mutator.Name());
|
|
|
|
// Exercise mutating an empty checksummed cord to catch crashes and exercise
|
|
// memory sanitizers.
|
|
absl::Cord c2;
|
|
c2.SetExpectedChecksum(24680);
|
|
mutator.Mutate(c2);
|
|
|
|
if (c2.empty()) {
|
|
// Not a mutation
|
|
continue;
|
|
}
|
|
EXPECT_EQ(c2.ExpectedChecksum(), absl::nullopt);
|
|
|
|
if (mutator.CanUndo()) {
|
|
mutator.Undo(c2);
|
|
}
|
|
}
|
|
|
|
absl::Cord c3;
|
|
c3.SetExpectedChecksum(999);
|
|
const absl::Cord& cc3 = c3;
|
|
|
|
// Test that all cord reading operations function in the face of an
|
|
// expected checksum.
|
|
EXPECT_TRUE(cc3.StartsWith(""));
|
|
EXPECT_TRUE(cc3.EndsWith(""));
|
|
EXPECT_TRUE(cc3.empty());
|
|
EXPECT_EQ(cc3, "");
|
|
EXPECT_EQ(cc3, absl::Cord());
|
|
EXPECT_EQ(cc3.size(), 0);
|
|
EXPECT_EQ(cc3.Compare(absl::Cord()), 0);
|
|
EXPECT_EQ(cc3.Compare(c1), 0);
|
|
EXPECT_EQ(cc3.Compare(cc3), 0);
|
|
EXPECT_EQ(cc3.Compare(""), 0);
|
|
EXPECT_EQ(cc3.Compare("wxyz"), -1);
|
|
EXPECT_EQ(cc3.Compare(absl::Cord("wxyz")), -1);
|
|
EXPECT_EQ(absl::Cord("wxyz").Compare(cc3), 1);
|
|
EXPECT_EQ(std::string(cc3), "");
|
|
|
|
std::string dest;
|
|
absl::CopyCordToString(cc3, &dest);
|
|
EXPECT_EQ(dest, "");
|
|
|
|
for (absl::string_view chunk : cc3.Chunks()) { // NOLINT(unreachable loop)
|
|
static_cast<void>(chunk);
|
|
GTEST_FAIL() << "no chunks expected";
|
|
}
|
|
EXPECT_TRUE(cc3.chunk_begin() == cc3.chunk_end());
|
|
|
|
for (char ch : cc3.Chars()) { // NOLINT(unreachable loop)
|
|
static_cast<void>(ch);
|
|
GTEST_FAIL() << "no chars expected";
|
|
}
|
|
EXPECT_TRUE(cc3.char_begin() == cc3.char_end());
|
|
|
|
EXPECT_EQ(cc3.TryFlat(), "");
|
|
EXPECT_EQ(absl::HashOf(c3), absl::HashOf(absl::Cord()));
|
|
EXPECT_EQ(absl::HashOf(c3), absl::HashOf(absl::string_view()));
|
|
}
|
|
|
|
#if defined(GTEST_HAS_DEATH_TEST) && defined(ABSL_INTERNAL_CORD_HAVE_SANITIZER)
|
|
|
|
// Returns an expected poison / uninitialized death message expression.
|
|
const char* MASanDeathExpr() {
|
|
return "(use-after-poison|use-of-uninitialized-value)";
|
|
}
|
|
|
|
TEST(CordSanitizerTest, SanitizesEmptyCord) {
|
|
absl::Cord cord;
|
|
const char* data = cord.Flatten().data();
|
|
EXPECT_DEATH(EXPECT_EQ(data[0], 0), MASanDeathExpr());
|
|
}
|
|
|
|
TEST(CordSanitizerTest, SanitizesSmallCord) {
|
|
absl::Cord cord("Hello");
|
|
const char* data = cord.Flatten().data();
|
|
EXPECT_DEATH(EXPECT_EQ(data[5], 0), MASanDeathExpr());
|
|
}
|
|
|
|
TEST(CordSanitizerTest, SanitizesCordOnSetSSOValue) {
|
|
absl::Cord cord("String that is too big to be an SSO value");
|
|
cord = "Hello";
|
|
const char* data = cord.Flatten().data();
|
|
EXPECT_DEATH(EXPECT_EQ(data[5], 0), MASanDeathExpr());
|
|
}
|
|
|
|
TEST(CordSanitizerTest, SanitizesCordOnCopyCtor) {
|
|
absl::Cord src("hello");
|
|
absl::Cord dst(src);
|
|
const char* data = dst.Flatten().data();
|
|
EXPECT_DEATH(EXPECT_EQ(data[5], 0), MASanDeathExpr());
|
|
}
|
|
|
|
TEST(CordSanitizerTest, SanitizesCordOnMoveCtor) {
|
|
absl::Cord src("hello");
|
|
absl::Cord dst(std::move(src));
|
|
const char* data = dst.Flatten().data();
|
|
EXPECT_DEATH(EXPECT_EQ(data[5], 0), MASanDeathExpr());
|
|
}
|
|
|
|
TEST(CordSanitizerTest, SanitizesCordOnAssign) {
|
|
absl::Cord src("hello");
|
|
absl::Cord dst;
|
|
dst = src;
|
|
const char* data = dst.Flatten().data();
|
|
EXPECT_DEATH(EXPECT_EQ(data[5], 0), MASanDeathExpr());
|
|
}
|
|
|
|
TEST(CordSanitizerTest, SanitizesCordOnMoveAssign) {
|
|
absl::Cord src("hello");
|
|
absl::Cord dst;
|
|
dst = std::move(src);
|
|
const char* data = dst.Flatten().data();
|
|
EXPECT_DEATH(EXPECT_EQ(data[5], 0), MASanDeathExpr());
|
|
}
|
|
|
|
TEST(CordSanitizerTest, SanitizesCordOnSsoAssign) {
|
|
absl::Cord src("hello");
|
|
absl::Cord dst("String that is too big to be an SSO value");
|
|
dst = src;
|
|
const char* data = dst.Flatten().data();
|
|
EXPECT_DEATH(EXPECT_EQ(data[5], 0), MASanDeathExpr());
|
|
}
|
|
|
|
#endif // GTEST_HAS_DEATH_TEST && ABSL_INTERNAL_CORD_HAVE_SANITIZER
|