1966 lines
67 KiB
C++
1966 lines
67 KiB
C++
// -*- c++ -*-
|
|
// Protocol Buffers - Google's data interchange format
|
|
// Copyright 2008 Google Inc. All rights reserved.
|
|
// https://developers.google.com/protocol-buffers/
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following disclaimer
|
|
// in the documentation and/or other materials provided with the
|
|
// distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived from
|
|
// this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
// Author: kenton@google.com (Kenton Varda)
|
|
// Based on original Protocol Buffers design by
|
|
// Sanjay Ghemawat, Jeff Dean, and others.
|
|
//
|
|
// This file needs to be included as .inc as it depends on certain macros being
|
|
// defined prior to its inclusion.
|
|
|
|
#include <fcntl.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/types.h>
|
|
|
|
#include <cmath>
|
|
#include <functional>
|
|
#include <limits>
|
|
#include <vector>
|
|
|
|
#ifndef _MSC_VER
|
|
#include <unistd.h>
|
|
#endif
|
|
#include <fstream>
|
|
#include <sstream>
|
|
|
|
#include "google/protobuf/descriptor.pb.h"
|
|
#include <gmock/gmock.h>
|
|
#include "google/protobuf/testing/googletest.h"
|
|
#include <gtest/gtest.h>
|
|
#include "absl/log/absl_check.h"
|
|
#include "absl/log/scoped_mock_log.h"
|
|
#include "absl/strings/cord.h"
|
|
#include "absl/strings/substitute.h"
|
|
#include "google/protobuf/arena.h"
|
|
#include "google/protobuf/descriptor.h"
|
|
#include "google/protobuf/dynamic_message.h"
|
|
#include "google/protobuf/generated_message_reflection.h"
|
|
#include "google/protobuf/generated_message_tctable_impl.h"
|
|
#include "google/protobuf/io/coded_stream.h"
|
|
#include "google/protobuf/io/io_win32.h"
|
|
#include "google/protobuf/io/zero_copy_stream.h"
|
|
#include "google/protobuf/io/zero_copy_stream_impl.h"
|
|
#include "google/protobuf/message.h"
|
|
#include "google/protobuf/test_util2.h"
|
|
|
|
|
|
// Must be included last.
|
|
#include "google/protobuf/port_def.inc"
|
|
|
|
namespace google {
|
|
namespace protobuf {
|
|
|
|
#if defined(_WIN32)
|
|
// DO NOT include <io.h>, instead create functions in io_win32.{h,cc} and import
|
|
// them like we do below.
|
|
using google::protobuf::io::win32::close;
|
|
using google::protobuf::io::win32::open;
|
|
#endif
|
|
|
|
#ifndef O_BINARY
|
|
#ifdef _O_BINARY
|
|
#define O_BINARY _O_BINARY
|
|
#else
|
|
#define O_BINARY 0 // If this isn't defined, the platform doesn't need it.
|
|
#endif
|
|
#endif
|
|
|
|
TEST(MESSAGE_TEST_NAME, SerializeHelpers) {
|
|
// TODO(kenton): Test more helpers? They're all two-liners so it seems
|
|
// like a waste of time.
|
|
|
|
UNITTEST::TestAllTypes message;
|
|
TestUtil::SetAllFields(&message);
|
|
std::stringstream stream;
|
|
|
|
std::string str1("foo");
|
|
std::string str2("bar");
|
|
|
|
EXPECT_TRUE(message.SerializeToString(&str1));
|
|
EXPECT_TRUE(message.AppendToString(&str2));
|
|
EXPECT_TRUE(message.SerializeToOstream(&stream));
|
|
|
|
EXPECT_EQ(str1.size() + 3, str2.size());
|
|
EXPECT_EQ("bar", str2.substr(0, 3));
|
|
// Don't use EXPECT_EQ because we don't want to dump raw binary data to
|
|
// stdout.
|
|
EXPECT_TRUE(str2.substr(3) == str1);
|
|
|
|
// GCC gives some sort of error if we try to just do stream.str() == str1.
|
|
std::string temp = stream.str();
|
|
EXPECT_TRUE(temp == str1);
|
|
|
|
EXPECT_TRUE(message.SerializeAsString() == str1);
|
|
|
|
}
|
|
|
|
TEST(MESSAGE_TEST_NAME, SerializeToBrokenOstream) {
|
|
std::ofstream out;
|
|
UNITTEST::TestAllTypes message;
|
|
message.set_optional_int32(123);
|
|
|
|
EXPECT_FALSE(message.SerializeToOstream(&out));
|
|
}
|
|
|
|
TEST(MESSAGE_TEST_NAME, ParseFromFileDescriptor) {
|
|
std::string filename =
|
|
TestUtil::GetTestDataPath("google/protobuf/testdata/golden_message");
|
|
int file = open(filename.c_str(), O_RDONLY | O_BINARY);
|
|
ASSERT_GE(file, 0);
|
|
|
|
UNITTEST::TestAllTypes message;
|
|
EXPECT_TRUE(message.ParseFromFileDescriptor(file));
|
|
TestUtil::ExpectAllFieldsSet(message);
|
|
|
|
EXPECT_GE(close(file), 0);
|
|
}
|
|
|
|
TEST(MESSAGE_TEST_NAME, ParsePackedFromFileDescriptor) {
|
|
std::string filename = TestUtil::GetTestDataPath(
|
|
"google/protobuf/testdata/golden_packed_fields_message");
|
|
int file = open(filename.c_str(), O_RDONLY | O_BINARY);
|
|
ASSERT_GE(file, 0);
|
|
|
|
UNITTEST::TestPackedTypes message;
|
|
EXPECT_TRUE(message.ParseFromFileDescriptor(file));
|
|
TestUtil::ExpectPackedFieldsSet(message);
|
|
|
|
EXPECT_GE(close(file), 0);
|
|
}
|
|
|
|
TEST(MESSAGE_TEST_NAME, ParseHelpers) {
|
|
// TODO(kenton): Test more helpers? They're all two-liners so it seems
|
|
// like a waste of time.
|
|
std::string data;
|
|
|
|
{
|
|
// Set up.
|
|
UNITTEST::TestAllTypes message;
|
|
TestUtil::SetAllFields(&message);
|
|
message.SerializeToString(&data);
|
|
}
|
|
|
|
{
|
|
// Test ParseFromString.
|
|
UNITTEST::TestAllTypes message;
|
|
EXPECT_TRUE(message.ParseFromString(data));
|
|
TestUtil::ExpectAllFieldsSet(message);
|
|
}
|
|
|
|
{
|
|
// Test ParseFromIstream.
|
|
UNITTEST::TestAllTypes message;
|
|
std::stringstream stream(data);
|
|
EXPECT_TRUE(message.ParseFromIstream(&stream));
|
|
EXPECT_TRUE(stream.eof());
|
|
TestUtil::ExpectAllFieldsSet(message);
|
|
}
|
|
|
|
{
|
|
// Test ParseFromBoundedZeroCopyStream.
|
|
std::string data_with_junk(data);
|
|
data_with_junk.append("some junk on the end");
|
|
io::ArrayInputStream stream(data_with_junk.data(), data_with_junk.size());
|
|
UNITTEST::TestAllTypes message;
|
|
EXPECT_TRUE(message.ParseFromBoundedZeroCopyStream(&stream, data.size()));
|
|
TestUtil::ExpectAllFieldsSet(message);
|
|
}
|
|
|
|
{
|
|
// Test that ParseFromBoundedZeroCopyStream fails (but doesn't crash) if
|
|
// EOF is reached before the expected number of bytes.
|
|
io::ArrayInputStream stream(data.data(), data.size());
|
|
UNITTEST::TestAllTypes message;
|
|
EXPECT_FALSE(
|
|
message.ParseFromBoundedZeroCopyStream(&stream, data.size() + 1));
|
|
}
|
|
|
|
// Test bytes cord
|
|
{
|
|
UNITTEST::TestCord cord_message;
|
|
cord_message.set_optional_bytes_cord("bytes_cord");
|
|
EXPECT_TRUE(cord_message.SerializeToString(&data));
|
|
EXPECT_TRUE(cord_message.SerializeAsString() == data);
|
|
}
|
|
{
|
|
UNITTEST::TestCord cord_message;
|
|
EXPECT_TRUE(cord_message.ParseFromString(data));
|
|
EXPECT_EQ("bytes_cord", cord_message.optional_bytes_cord());
|
|
}
|
|
}
|
|
|
|
TEST(MESSAGE_TEST_NAME, ParseFailsIfNotInitialized) {
|
|
UNITTEST::TestRequired message;
|
|
|
|
{
|
|
absl::ScopedMockLog log(absl::MockLogDefault::kDisallowUnexpected);
|
|
EXPECT_CALL(log, Log(absl::LogSeverity::kError, testing::_, absl::StrCat(
|
|
"Can't parse message of type \"", UNITTEST_PACKAGE_NAME,
|
|
".TestRequired\" because it is missing required fields: a, b, c")));
|
|
log.StartCapturingLogs();
|
|
EXPECT_FALSE(message.ParseFromString(""));
|
|
}
|
|
}
|
|
|
|
TEST(MESSAGE_TEST_NAME, ParseFailsIfSubmessageNotInitialized) {
|
|
UNITTEST::TestRequiredForeign source, message;
|
|
source.mutable_optional_message()->set_dummy2(100);
|
|
std::string serialized = source.SerializePartialAsString();
|
|
|
|
EXPECT_TRUE(message.ParsePartialFromString(serialized));
|
|
EXPECT_FALSE(message.IsInitialized());
|
|
|
|
{
|
|
absl::ScopedMockLog log(absl::MockLogDefault::kDisallowUnexpected);
|
|
EXPECT_CALL(log, Log(absl::LogSeverity::kError, testing::_, absl::StrCat(
|
|
"Can't parse message of type \"", UNITTEST_PACKAGE_NAME,
|
|
".TestRequiredForeign\" because it is missing required fields: "
|
|
"optional_message.a, optional_message.b, optional_message.c")));
|
|
log.StartCapturingLogs();
|
|
EXPECT_FALSE(message.ParseFromString(source.SerializePartialAsString()));
|
|
}
|
|
}
|
|
|
|
TEST(MESSAGE_TEST_NAME, ParseFailsIfExtensionNotInitialized) {
|
|
UNITTEST::TestChildExtension source, message;
|
|
auto* r = source.mutable_optional_extension()->MutableExtension(
|
|
UNITTEST::TestRequired::single);
|
|
r->set_dummy2(100);
|
|
std::string serialized = source.SerializePartialAsString();
|
|
|
|
EXPECT_TRUE(message.ParsePartialFromString(serialized));
|
|
EXPECT_FALSE(message.IsInitialized());
|
|
|
|
{
|
|
absl::ScopedMockLog log(absl::MockLogDefault::kDisallowUnexpected);
|
|
EXPECT_CALL(log, Log(absl::LogSeverity::kError, testing::_, absl::Substitute(
|
|
"Can't parse message of type \"$0.TestChildExtension\" "
|
|
"because it is missing required fields: "
|
|
"optional_extension.($0.TestRequired.single).a, "
|
|
"optional_extension.($0.TestRequired.single).b, "
|
|
"optional_extension.($0.TestRequired.single).c",
|
|
UNITTEST_PACKAGE_NAME)));
|
|
log.StartCapturingLogs();
|
|
EXPECT_FALSE(message.ParseFromString(source.SerializePartialAsString()));
|
|
}
|
|
}
|
|
|
|
TEST(MESSAGE_TEST_NAME, MergeFromUninitialized) {
|
|
UNITTEST::TestNestedRequiredForeign o, p, q;
|
|
UNITTEST::TestNestedRequiredForeign* child = o.mutable_child();
|
|
constexpr int kDepth = 2;
|
|
for (int i = 0; i < kDepth; i++) {
|
|
child->set_dummy(i);
|
|
child = child->mutable_child();
|
|
}
|
|
UNITTEST::TestRequiredForeign* payload = child->mutable_payload();
|
|
payload->mutable_optional_message()->set_a(1);
|
|
payload->mutable_optional_message()->set_dummy2(100);
|
|
payload->mutable_optional_message()->set_dummy4(200);
|
|
ASSERT_TRUE(p.ParsePartialFromString(o.SerializePartialAsString()));
|
|
|
|
q.mutable_child()->set_dummy(500);
|
|
q = p;
|
|
q.ParsePartialFromString(q.SerializePartialAsString());
|
|
EXPECT_TRUE(TestUtil::EqualsToSerialized(q, o.SerializePartialAsString()));
|
|
EXPECT_TRUE(TestUtil::EqualsToSerialized(q, p.SerializePartialAsString()));
|
|
}
|
|
|
|
TEST(MESSAGE_TEST_NAME, UninitializedAndTooDeep) {
|
|
UNITTEST::TestRequiredForeign original;
|
|
original.mutable_optional_message()->set_a(1);
|
|
original.mutable_optional_lazy_message()
|
|
->mutable_child()
|
|
->mutable_payload()
|
|
->set_optional_int64(0);
|
|
|
|
std::string data;
|
|
ASSERT_TRUE(original.SerializePartialToString(&data));
|
|
|
|
UNITTEST::TestRequiredForeign pass;
|
|
ASSERT_TRUE(pass.ParsePartialFromString(data));
|
|
ASSERT_FALSE(pass.IsInitialized());
|
|
|
|
io::ArrayInputStream array_stream(data.data(), data.size());
|
|
io::CodedInputStream input_stream(&array_stream);
|
|
input_stream.SetRecursionLimit(2);
|
|
|
|
UNITTEST::TestRequiredForeign fail;
|
|
EXPECT_FALSE(fail.ParsePartialFromCodedStream(&input_stream));
|
|
|
|
UNITTEST::TestRequiredForeign fail_uninitialized;
|
|
EXPECT_FALSE(fail_uninitialized.ParseFromString(data));
|
|
}
|
|
|
|
TEST(MESSAGE_TEST_NAME, ExplicitLazyExceedRecursionLimit) {
|
|
UNITTEST::NestedTestAllTypes original, parsed;
|
|
// Build proto with recursion depth of 3.
|
|
original.mutable_lazy_child()
|
|
->mutable_child()
|
|
->mutable_payload()
|
|
->set_optional_int32(-1);
|
|
std::string serialized;
|
|
EXPECT_TRUE(original.SerializeToString(&serialized));
|
|
|
|
// User annotated LazyField ([lazy = true]) is eagerly verified and should
|
|
// catch the recursion limit violation.
|
|
io::ArrayInputStream array_stream(serialized.data(), serialized.size());
|
|
io::CodedInputStream input_stream(&array_stream);
|
|
input_stream.SetRecursionLimit(2);
|
|
EXPECT_FALSE(parsed.ParseFromCodedStream(&input_stream));
|
|
|
|
// Lazy read results in parsing error which can be verified by not having
|
|
// expected value.
|
|
EXPECT_NE(parsed.lazy_child().child().payload().optional_int32(), -1);
|
|
}
|
|
|
|
TEST(MESSAGE_TEST_NAME, ParseFailNonCanonicalZeroTag) {
|
|
const char encoded[] = {"\n\x3\x80\0\0"};
|
|
UNITTEST::NestedTestAllTypes parsed;
|
|
EXPECT_FALSE(parsed.ParsePartialFromString(
|
|
absl::string_view{encoded, sizeof(encoded) - 1}));
|
|
}
|
|
|
|
TEST(MESSAGE_TEST_NAME, ParseFailNonCanonicalZeroField) {
|
|
const char encoded[] = {"\012\x6\205\0\0\0\0\0"};
|
|
UNITTEST::NestedTestAllTypes parsed;
|
|
EXPECT_FALSE(parsed.ParsePartialFromString(
|
|
absl::string_view{encoded, sizeof(encoded) - 1}));
|
|
}
|
|
|
|
TEST(MESSAGE_TEST_NAME, NestedExplicitLazyExceedRecursionLimit) {
|
|
UNITTEST::NestedTestAllTypes original, parsed;
|
|
// Build proto with recursion depth of 5, with nested annotated LazyField.
|
|
original.mutable_lazy_child()
|
|
->mutable_child()
|
|
->mutable_lazy_child()
|
|
->mutable_child()
|
|
->mutable_payload()
|
|
->set_optional_int32(-1);
|
|
std::string serialized;
|
|
EXPECT_TRUE(original.SerializeToString(&serialized));
|
|
|
|
// User annotated LazyField ([lazy = true]) is eagerly verified and should
|
|
// catch the recursion limit violation.
|
|
io::ArrayInputStream array_stream(serialized.data(), serialized.size());
|
|
io::CodedInputStream input_stream(&array_stream);
|
|
input_stream.SetRecursionLimit(4);
|
|
EXPECT_FALSE(parsed.ParseFromCodedStream(&input_stream));
|
|
|
|
// Lazy read results in parsing error which can be verified by not having
|
|
// expected value.
|
|
EXPECT_NE(parsed.lazy_child()
|
|
.child()
|
|
.lazy_child()
|
|
.child()
|
|
.payload()
|
|
.optional_int32(),
|
|
-1);
|
|
}
|
|
|
|
TEST(MESSAGE_TEST_NAME, ParseFailsIfSubmessageTruncated) {
|
|
UNITTEST::NestedTestAllTypes o, p;
|
|
constexpr int kDepth = 5;
|
|
auto* child = o.mutable_child();
|
|
for (int i = 0; i < kDepth; i++) {
|
|
child = child->mutable_child();
|
|
}
|
|
TestUtil::SetAllFields(child->mutable_payload());
|
|
|
|
std::string serialized;
|
|
EXPECT_TRUE(o.SerializeToString(&serialized));
|
|
|
|
// Should parse correctly.
|
|
EXPECT_TRUE(p.ParseFromString(serialized));
|
|
|
|
constexpr int kMaxTruncate = 50;
|
|
ASSERT_GT(serialized.size(), kMaxTruncate);
|
|
|
|
for (int i = 1; i < kMaxTruncate; i += 3) {
|
|
EXPECT_FALSE(
|
|
p.ParseFromString(serialized.substr(0, serialized.size() - i)));
|
|
}
|
|
}
|
|
|
|
TEST(MESSAGE_TEST_NAME, ParseFailsIfWireMalformed) {
|
|
UNITTEST::NestedTestAllTypes o, p;
|
|
constexpr int kDepth = 5;
|
|
auto* child = o.mutable_child();
|
|
for (int i = 0; i < kDepth; i++) {
|
|
child = child->mutable_child();
|
|
}
|
|
// -1 becomes \xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\x1
|
|
child->mutable_payload()->set_optional_int32(-1);
|
|
|
|
std::string serialized;
|
|
EXPECT_TRUE(o.SerializeToString(&serialized));
|
|
|
|
// Should parse correctly.
|
|
EXPECT_TRUE(p.ParseFromString(serialized));
|
|
|
|
// Overwriting the last byte to 0xFF results in malformed wire.
|
|
serialized[serialized.size() - 1] = 0xFF;
|
|
EXPECT_FALSE(p.ParseFromString(serialized));
|
|
}
|
|
|
|
TEST(MESSAGE_TEST_NAME, ParseFailsIfOneofWireMalformed) {
|
|
UNITTEST::NestedTestAllTypes o, p;
|
|
constexpr int kDepth = 5;
|
|
auto* child = o.mutable_child();
|
|
for (int i = 0; i < kDepth; i++) {
|
|
child = child->mutable_child();
|
|
}
|
|
// -1 becomes \xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\x1
|
|
child->mutable_payload()->mutable_oneof_nested_message()->set_bb(-1);
|
|
|
|
std::string serialized;
|
|
EXPECT_TRUE(o.SerializeToString(&serialized));
|
|
|
|
// Should parse correctly.
|
|
EXPECT_TRUE(p.ParseFromString(serialized));
|
|
|
|
// Overwriting the last byte to 0xFF results in malformed wire.
|
|
serialized[serialized.size() - 1] = 0xFF;
|
|
EXPECT_FALSE(p.ParseFromString(serialized));
|
|
}
|
|
|
|
TEST(MESSAGE_TEST_NAME, ParseFailsIfExtensionWireMalformed) {
|
|
UNITTEST::TestChildExtension o, p;
|
|
auto* m = o.mutable_optional_extension()->MutableExtension(
|
|
UNITTEST::optional_nested_message_extension);
|
|
|
|
// -1 becomes \xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\x1
|
|
m->set_bb(-1);
|
|
|
|
std::string serialized;
|
|
EXPECT_TRUE(o.SerializeToString(&serialized));
|
|
|
|
// Should parse correctly.
|
|
EXPECT_TRUE(p.ParseFromString(serialized));
|
|
|
|
// Overwriting the last byte to 0xFF results in malformed wire.
|
|
serialized[serialized.size() - 1] = 0xFF;
|
|
EXPECT_FALSE(p.ParseFromString(serialized));
|
|
}
|
|
|
|
TEST(MESSAGE_TEST_NAME, ParseFailsIfGroupFieldMalformed) {
|
|
UNITTEST::TestMutualRecursionA original, parsed;
|
|
original.mutable_bb()
|
|
->mutable_a()
|
|
->mutable_subgroup()
|
|
->mutable_sub_message()
|
|
->mutable_b()
|
|
->set_optional_int32(-1);
|
|
|
|
std::string data;
|
|
ASSERT_TRUE(original.SerializeToString(&data));
|
|
// Should parse correctly.
|
|
ASSERT_TRUE(parsed.ParseFromString(data));
|
|
// Overwriting the last byte of varint (-1) to 0xFF results in malformed wire.
|
|
data[data.size() - 2] = 0xFF;
|
|
|
|
EXPECT_FALSE(parsed.ParseFromString(data));
|
|
}
|
|
|
|
TEST(MESSAGE_TEST_NAME, ParseFailsIfRepeatedGroupFieldMalformed) {
|
|
UNITTEST::TestMutualRecursionA original, parsed;
|
|
original.mutable_bb()
|
|
->mutable_a()
|
|
->add_subgroupr()
|
|
->mutable_payload()
|
|
->set_optional_int64(-1);
|
|
|
|
std::string data;
|
|
ASSERT_TRUE(original.SerializeToString(&data));
|
|
// Should parse correctly.
|
|
ASSERT_TRUE(parsed.ParseFromString(data));
|
|
// Overwriting the last byte of varint (-1) to 0xFF results in malformed wire.
|
|
data[data.size() - 2] = 0xFF;
|
|
|
|
EXPECT_FALSE(parsed.ParseFromString(data));
|
|
}
|
|
|
|
TEST(MESSAGE_TEST_NAME, UninitializedAndMalformed) {
|
|
UNITTEST::TestRequiredForeign o, p1, p2;
|
|
o.mutable_optional_message()->set_a(-1);
|
|
|
|
// -1 becomes \xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\x1
|
|
std::string serialized;
|
|
EXPECT_TRUE(o.SerializePartialToString(&serialized));
|
|
|
|
// Should parse correctly.
|
|
EXPECT_TRUE(p1.ParsePartialFromString(serialized));
|
|
EXPECT_FALSE(p1.IsInitialized());
|
|
|
|
// Overwriting the last byte to 0xFF results in malformed wire.
|
|
serialized[serialized.size() - 1] = 0xFF;
|
|
EXPECT_FALSE(p2.ParseFromString(serialized));
|
|
EXPECT_FALSE(p2.IsInitialized());
|
|
}
|
|
|
|
inline UNITTEST::NestedTestAllTypes InitNestedProto(int depth) {
|
|
UNITTEST::NestedTestAllTypes p;
|
|
auto* child = p.mutable_child();
|
|
for (int i = 0; i < depth; i++) {
|
|
child->mutable_payload()->set_optional_int32(i);
|
|
child = child->mutable_child();
|
|
}
|
|
// -1 becomes \xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\x1
|
|
child->mutable_payload()->set_optional_int32(-1);
|
|
return p;
|
|
}
|
|
|
|
// Parsing proto must not access beyond the bound.
|
|
TEST(MESSAGE_TEST_NAME, ParseStrictlyBoundedStream) {
|
|
UNITTEST::NestedTestAllTypes o, p;
|
|
constexpr int kDepth = 2;
|
|
o = InitNestedProto(kDepth);
|
|
TestUtil::SetAllFields(o.mutable_child()->mutable_payload());
|
|
o.mutable_child()->mutable_child()->mutable_payload()->set_optional_string(
|
|
std::string(1024, 'a'));
|
|
|
|
std::string data;
|
|
EXPECT_TRUE(o.SerializeToString(&data));
|
|
|
|
TestUtil::BoundedArrayInputStream stream(data.data(), data.size());
|
|
EXPECT_TRUE(p.ParseFromBoundedZeroCopyStream(&stream, data.size()));
|
|
TestUtil::ExpectAllFieldsSet(p.child().payload());
|
|
}
|
|
|
|
TEST(MESSAGE_TEST_NAME, AllSetMethodsOnStringField) {
|
|
UNITTEST::TestAllTypes msg;
|
|
|
|
msg.set_optional_string(absl::string_view("Abcdef"));
|
|
EXPECT_EQ(msg.optional_string(), "Abcdef");
|
|
|
|
msg.set_optional_string("Asciiz");
|
|
EXPECT_EQ(msg.optional_string(), "Asciiz");
|
|
|
|
msg.set_optional_string("Length delimited", 6);
|
|
EXPECT_EQ(msg.optional_string(), "Length");
|
|
|
|
std::string value = "std::string value 1";
|
|
msg.set_optional_string(value);
|
|
EXPECT_EQ(msg.optional_string(), "std::string value 1");
|
|
|
|
value = "std::string value 2";
|
|
msg.set_optional_string(std::cref(value));
|
|
EXPECT_EQ(msg.optional_string(), "std::string value 2");
|
|
|
|
value = "std::string value 3";
|
|
msg.set_optional_string(std::move(value));
|
|
EXPECT_EQ(msg.optional_string(), "std::string value 3");
|
|
}
|
|
|
|
|
|
TEST(MESSAGE_TEST_NAME, AllAddMethodsOnRepeatedStringField) {
|
|
UNITTEST::TestAllTypes msg;
|
|
|
|
msg.add_repeated_string(absl::string_view("Abcdef"));
|
|
EXPECT_EQ(msg.repeated_string(0), "Abcdef");
|
|
msg.clear_repeated_string();
|
|
|
|
msg.add_repeated_string("Asciiz");
|
|
EXPECT_EQ(msg.repeated_string(0), "Asciiz");
|
|
msg.clear_repeated_string();
|
|
|
|
msg.add_repeated_string("Length delimited", 6);
|
|
EXPECT_EQ(msg.repeated_string(0), "Length");
|
|
msg.clear_repeated_string();
|
|
|
|
std::string value = "std::string value 1";
|
|
msg.add_repeated_string(value);
|
|
EXPECT_EQ(msg.repeated_string(0), "std::string value 1");
|
|
msg.clear_repeated_string();
|
|
|
|
value = "std::string value 2";
|
|
msg.add_repeated_string(std::cref(value));
|
|
EXPECT_EQ(msg.repeated_string(0), "std::string value 2");
|
|
msg.clear_repeated_string();
|
|
|
|
value = "std::string value 3";
|
|
msg.add_repeated_string(std::move(value));
|
|
EXPECT_EQ(msg.repeated_string(0), "std::string value 3");
|
|
msg.clear_repeated_string();
|
|
}
|
|
|
|
// Helper functions to touch any nested lazy field
|
|
void TouchLazy(UNITTEST::NestedTestAllTypes* msg);
|
|
void TouchLazy(UNITTEST::TestAllTypes* msg);
|
|
void TouchLazy(UNITTEST::TestAllTypes::NestedMessage* msg) {}
|
|
|
|
void TouchLazy(UNITTEST::TestAllTypes* msg) {
|
|
if (msg->has_optional_lazy_message()) {
|
|
TouchLazy(msg->mutable_optional_lazy_message());
|
|
}
|
|
if (msg->has_optional_unverified_lazy_message()) {
|
|
TouchLazy(msg->mutable_optional_unverified_lazy_message());
|
|
}
|
|
for (auto& child : *msg->mutable_repeated_lazy_message()) {
|
|
TouchLazy(&child);
|
|
}
|
|
}
|
|
|
|
void TouchLazy(UNITTEST::NestedTestAllTypes* msg) {
|
|
if (msg->has_child()) TouchLazy(msg->mutable_child());
|
|
if (msg->has_payload()) TouchLazy(msg->mutable_payload());
|
|
for (auto& child : *msg->mutable_repeated_child()) {
|
|
TouchLazy(&child);
|
|
}
|
|
if (msg->has_lazy_child()) TouchLazy(msg->mutable_lazy_child());
|
|
if (msg->has_eager_child()) TouchLazy(msg->mutable_eager_child());
|
|
}
|
|
|
|
TEST(MESSAGE_TEST_NAME, SuccessAfterParsingFailure) {
|
|
UNITTEST::NestedTestAllTypes o, p, q;
|
|
constexpr int kDepth = 5;
|
|
o = InitNestedProto(kDepth);
|
|
std::string serialized;
|
|
EXPECT_TRUE(o.SerializeToString(&serialized));
|
|
|
|
// Should parse correctly.
|
|
EXPECT_TRUE(p.ParseFromString(serialized));
|
|
|
|
// Overwriting the last byte to 0xFF results in malformed wire.
|
|
serialized[serialized.size() - 1] = 0xFF;
|
|
EXPECT_FALSE(p.ParseFromString(serialized));
|
|
|
|
// If the affected byte is inside a lazy message, we have no guarantee that it
|
|
// serializes into error free data because serialization needs to preserve
|
|
// const correctness on lazy fields: `touch` all lazy fields.
|
|
TouchLazy(&p);
|
|
EXPECT_TRUE(q.ParseFromString(p.SerializeAsString()));
|
|
}
|
|
|
|
TEST(MESSAGE_TEST_NAME, ExceedRecursionLimit) {
|
|
UNITTEST::NestedTestAllTypes o, p;
|
|
const int kDepth = io::CodedInputStream::GetDefaultRecursionLimit() + 10;
|
|
o = InitNestedProto(kDepth);
|
|
std::string serialized;
|
|
EXPECT_TRUE(o.SerializeToString(&serialized));
|
|
|
|
// Recursion level deeper than the default.
|
|
EXPECT_FALSE(p.ParseFromString(serialized));
|
|
}
|
|
|
|
TEST(MESSAGE_TEST_NAME, SupportCustomRecursionLimitRead) {
|
|
UNITTEST::NestedTestAllTypes o, p;
|
|
const int kDepth = io::CodedInputStream::GetDefaultRecursionLimit() + 10;
|
|
o = InitNestedProto(kDepth);
|
|
std::string serialized;
|
|
EXPECT_TRUE(o.SerializeToString(&serialized));
|
|
|
|
// Should pass with custom limit + reads.
|
|
io::ArrayInputStream raw_input(serialized.data(), serialized.size());
|
|
io::CodedInputStream input(&raw_input);
|
|
input.SetRecursionLimit(kDepth + 10);
|
|
EXPECT_TRUE(p.ParseFromCodedStream(&input));
|
|
|
|
EXPECT_EQ(p.child().payload().optional_int32(), 0);
|
|
EXPECT_EQ(p.child().child().payload().optional_int32(), 1);
|
|
|
|
// Verify p serializes successfully (survives VerifyConsistency).
|
|
std::string result;
|
|
EXPECT_TRUE(p.SerializeToString(&result));
|
|
}
|
|
|
|
TEST(MESSAGE_TEST_NAME, SupportCustomRecursionLimitWrite) {
|
|
UNITTEST::NestedTestAllTypes o, p;
|
|
const int kDepth = io::CodedInputStream::GetDefaultRecursionLimit() + 10;
|
|
o = InitNestedProto(kDepth);
|
|
std::string serialized;
|
|
EXPECT_TRUE(o.SerializeToString(&serialized));
|
|
|
|
// Should pass with custom limit + writes.
|
|
io::ArrayInputStream raw_input(serialized.data(), serialized.size());
|
|
io::CodedInputStream input(&raw_input);
|
|
input.SetRecursionLimit(kDepth + 10);
|
|
EXPECT_TRUE(p.ParseFromCodedStream(&input));
|
|
|
|
EXPECT_EQ(p.mutable_child()->mutable_payload()->optional_int32(), 0);
|
|
EXPECT_EQ(
|
|
p.mutable_child()->mutable_child()->mutable_payload()->optional_int32(),
|
|
1);
|
|
}
|
|
|
|
// While deep recursion is never guaranteed, this test aims to catch potential
|
|
// issues with very deep recursion.
|
|
TEST(MESSAGE_TEST_NAME, SupportDeepRecursionLimit) {
|
|
UNITTEST::NestedTestAllTypes o, p;
|
|
constexpr int kDepth = 1000;
|
|
auto* child = o.mutable_child();
|
|
for (int i = 0; i < kDepth; i++) {
|
|
child = child->mutable_child();
|
|
}
|
|
child->mutable_payload()->set_optional_int32(100);
|
|
|
|
std::string serialized;
|
|
EXPECT_TRUE(o.SerializeToString(&serialized));
|
|
|
|
io::ArrayInputStream raw_input(serialized.data(), serialized.size());
|
|
io::CodedInputStream input(&raw_input);
|
|
input.SetRecursionLimit(1100);
|
|
EXPECT_TRUE(p.ParseFromCodedStream(&input));
|
|
}
|
|
|
|
TEST(MESSAGE_TEST_NAME, Swap) {
|
|
UNITTEST::NestedTestAllTypes o;
|
|
constexpr int kDepth = 5;
|
|
auto* child = o.mutable_child();
|
|
for (int i = 0; i < kDepth; i++) {
|
|
child = child->mutable_child();
|
|
}
|
|
TestUtil::SetAllFields(child->mutable_payload());
|
|
|
|
std::string serialized;
|
|
EXPECT_TRUE(o.SerializeToString(&serialized));
|
|
|
|
{
|
|
Arena arena;
|
|
UNITTEST::NestedTestAllTypes* p1 =
|
|
Arena::CreateMessage<UNITTEST::NestedTestAllTypes>(&arena);
|
|
|
|
// Should parse correctly.
|
|
EXPECT_TRUE(p1->ParseFromString(serialized));
|
|
|
|
UNITTEST::NestedTestAllTypes* p2 =
|
|
Arena::CreateMessage<UNITTEST::NestedTestAllTypes>(&arena);
|
|
|
|
p1->Swap(p2);
|
|
|
|
EXPECT_EQ(o.SerializeAsString(), p2->SerializeAsString());
|
|
}
|
|
}
|
|
|
|
TEST(MESSAGE_TEST_NAME, BypassInitializationCheckOnParse) {
|
|
UNITTEST::TestRequired message;
|
|
io::ArrayInputStream raw_input(nullptr, 0);
|
|
io::CodedInputStream input(&raw_input);
|
|
EXPECT_TRUE(message.MergePartialFromCodedStream(&input));
|
|
}
|
|
|
|
TEST(MESSAGE_TEST_NAME, InitializationErrorString) {
|
|
UNITTEST::TestRequired message;
|
|
EXPECT_EQ("a, b, c", message.InitializationErrorString());
|
|
}
|
|
|
|
TEST(MESSAGE_TEST_NAME, DynamicCastToGenerated) {
|
|
UNITTEST::TestAllTypes test_all_types;
|
|
|
|
Message* test_all_types_pointer = &test_all_types;
|
|
EXPECT_EQ(&test_all_types, DynamicCastToGenerated<UNITTEST::TestAllTypes>(
|
|
test_all_types_pointer));
|
|
EXPECT_EQ(nullptr, DynamicCastToGenerated<UNITTEST::TestRequired>(
|
|
test_all_types_pointer));
|
|
|
|
const Message* test_all_types_pointer_const = &test_all_types;
|
|
EXPECT_EQ(&test_all_types,
|
|
DynamicCastToGenerated<const UNITTEST::TestAllTypes>(
|
|
test_all_types_pointer_const));
|
|
EXPECT_EQ(nullptr, DynamicCastToGenerated<const UNITTEST::TestRequired>(
|
|
test_all_types_pointer_const));
|
|
|
|
Message* test_all_types_pointer_nullptr = nullptr;
|
|
EXPECT_EQ(nullptr, DynamicCastToGenerated<UNITTEST::TestAllTypes>(
|
|
test_all_types_pointer_nullptr));
|
|
}
|
|
|
|
#if GTEST_HAS_DEATH_TEST // death tests do not work on Windows yet.
|
|
|
|
TEST(MESSAGE_TEST_NAME, SerializeFailsIfNotInitialized) {
|
|
UNITTEST::TestRequired message;
|
|
std::string data;
|
|
EXPECT_DEBUG_DEATH(
|
|
EXPECT_TRUE(message.SerializeToString(&data)),
|
|
absl::StrCat("Can't serialize message of type \"", UNITTEST_PACKAGE_NAME,
|
|
".TestRequired\" because "
|
|
"it is missing required fields: a, b, c"));
|
|
}
|
|
|
|
TEST(MESSAGE_TEST_NAME, CheckInitialized) {
|
|
UNITTEST::TestRequired message;
|
|
EXPECT_DEATH(message.CheckInitialized(),
|
|
absl::StrCat("Message of type \"", UNITTEST_PACKAGE_NAME,
|
|
".TestRequired\" is missing required "
|
|
"fields: a, b, c"));
|
|
}
|
|
|
|
#endif // GTEST_HAS_DEATH_TEST
|
|
|
|
namespace {
|
|
// An input stream that repeats a std::string's content for a number of times.
|
|
// It helps us create a really large input without consuming too much memory.
|
|
// Used to test the parsing behavior when the input size exceeds 2G or close to
|
|
// it.
|
|
class RepeatedInputStream : public io::ZeroCopyInputStream {
|
|
public:
|
|
RepeatedInputStream(const std::string& data, size_t count)
|
|
: data_(data), count_(count), position_(0), total_byte_count_(0) {}
|
|
|
|
bool Next(const void** data, int* size) override {
|
|
if (position_ == data_.size()) {
|
|
if (--count_ == 0) {
|
|
return false;
|
|
}
|
|
position_ = 0;
|
|
}
|
|
*data = &data_[position_];
|
|
*size = static_cast<int>(data_.size() - position_);
|
|
position_ = data_.size();
|
|
total_byte_count_ += *size;
|
|
return true;
|
|
}
|
|
|
|
void BackUp(int count) override {
|
|
position_ -= static_cast<size_t>(count);
|
|
total_byte_count_ -= count;
|
|
}
|
|
|
|
bool Skip(int count) override {
|
|
while (count > 0) {
|
|
const void* data;
|
|
int size;
|
|
if (!Next(&data, &size)) {
|
|
break;
|
|
}
|
|
if (size >= count) {
|
|
BackUp(size - count);
|
|
return true;
|
|
} else {
|
|
count -= size;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
int64_t ByteCount() const override { return total_byte_count_; }
|
|
|
|
private:
|
|
std::string data_;
|
|
size_t count_; // The number of strings that haven't been consumed.
|
|
size_t position_; // Position in the std::string for the next read.
|
|
int64_t total_byte_count_;
|
|
};
|
|
} // namespace
|
|
|
|
TEST(MESSAGE_TEST_NAME, TestParseMessagesCloseTo2G) {
|
|
constexpr int32_t kint32max = std::numeric_limits<int32_t>::max();
|
|
|
|
// Create a message with a large std::string field.
|
|
std::string value = std::string(64 * 1024 * 1024, 'x');
|
|
UNITTEST::TestAllTypes message;
|
|
message.set_optional_string(value);
|
|
|
|
// Repeat this message in the input stream to make the total input size
|
|
// close to 2G.
|
|
std::string data = message.SerializeAsString();
|
|
size_t count = static_cast<size_t>(kint32max) / data.size();
|
|
RepeatedInputStream input(data, count);
|
|
|
|
// The parsing should succeed.
|
|
UNITTEST::TestAllTypes result;
|
|
EXPECT_TRUE(result.ParseFromZeroCopyStream(&input));
|
|
|
|
// When there are multiple occurrences of a singular field, the last one
|
|
// should win.
|
|
EXPECT_EQ(value, result.optional_string());
|
|
}
|
|
|
|
TEST(MESSAGE_TEST_NAME, TestParseMessagesOver2G) {
|
|
constexpr int32_t kint32max = std::numeric_limits<int32_t>::max();
|
|
|
|
// Create a message with a large std::string field.
|
|
std::string value = std::string(64 * 1024 * 1024, 'x');
|
|
UNITTEST::TestAllTypes message;
|
|
message.set_optional_string(value);
|
|
|
|
// Repeat this message in the input stream to make the total input size
|
|
// larger than 2G.
|
|
std::string data = message.SerializeAsString();
|
|
size_t count = static_cast<size_t>(kint32max) / data.size() + 1;
|
|
RepeatedInputStream input(data, count);
|
|
|
|
// The parsing should fail.
|
|
UNITTEST::TestAllTypes result;
|
|
EXPECT_FALSE(result.ParseFromZeroCopyStream(&input));
|
|
}
|
|
|
|
TEST(MESSAGE_TEST_NAME, BypassInitializationCheckOnSerialize) {
|
|
UNITTEST::TestRequired message;
|
|
io::ArrayOutputStream raw_output(nullptr, 0);
|
|
io::CodedOutputStream output(&raw_output);
|
|
EXPECT_TRUE(message.SerializePartialToCodedStream(&output));
|
|
}
|
|
|
|
TEST(MESSAGE_TEST_NAME, FindInitializationErrors) {
|
|
UNITTEST::TestRequired message;
|
|
std::vector<std::string> errors;
|
|
message.FindInitializationErrors(&errors);
|
|
ASSERT_EQ(3, errors.size());
|
|
EXPECT_EQ("a", errors[0]);
|
|
EXPECT_EQ("b", errors[1]);
|
|
EXPECT_EQ("c", errors[2]);
|
|
}
|
|
|
|
TEST(MESSAGE_TEST_NAME, ReleaseMustUseResult) {
|
|
UNITTEST::TestAllTypes message;
|
|
auto* f = new UNITTEST::ForeignMessage();
|
|
f->set_c(1000);
|
|
message.set_allocated_optional_foreign_message(f);
|
|
auto* mf = message.mutable_optional_foreign_message();
|
|
EXPECT_EQ(mf, f);
|
|
std::unique_ptr<UNITTEST::ForeignMessage> rf(
|
|
message.release_optional_foreign_message());
|
|
EXPECT_NE(rf.get(), nullptr);
|
|
}
|
|
|
|
TEST(MESSAGE_TEST_NAME, ParseFailsOnInvalidMessageEnd) {
|
|
UNITTEST::TestAllTypes message;
|
|
|
|
// Control case.
|
|
EXPECT_TRUE(message.ParseFromArray("", 0));
|
|
|
|
// The byte is a valid varint, but not a valid tag (zero).
|
|
EXPECT_FALSE(message.ParseFromArray("\0", 1));
|
|
|
|
// The byte is a malformed varint.
|
|
EXPECT_FALSE(message.ParseFromArray("\200", 1));
|
|
|
|
// The byte is an endgroup tag, but we aren't parsing a group.
|
|
EXPECT_FALSE(message.ParseFromArray("\014", 1));
|
|
}
|
|
|
|
// Regression test for b/23630858
|
|
TEST(MESSAGE_TEST_NAME, MessageIsStillValidAfterParseFails) {
|
|
UNITTEST::TestAllTypes message;
|
|
|
|
// 9 0xFFs for the "optional_uint64" field.
|
|
std::string invalid_data = "\x20\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF";
|
|
|
|
EXPECT_FALSE(message.ParseFromString(invalid_data));
|
|
message.Clear();
|
|
EXPECT_EQ(0, message.optional_uint64());
|
|
|
|
// invalid data for field "optional_string". Length prefix is 1 but no
|
|
// payload.
|
|
std::string invalid_string_data = "\x72\x01";
|
|
{
|
|
Arena arena;
|
|
UNITTEST::TestAllTypes* arena_message =
|
|
Arena::CreateMessage<UNITTEST::TestAllTypes>(&arena);
|
|
EXPECT_FALSE(arena_message->ParseFromString(invalid_string_data));
|
|
arena_message->Clear();
|
|
EXPECT_EQ("", arena_message->optional_string());
|
|
}
|
|
}
|
|
|
|
|
|
namespace {
|
|
|
|
void ExpectMessageMerged(const UNITTEST::TestAllTypes& message) {
|
|
EXPECT_EQ(3, message.optional_int32());
|
|
EXPECT_EQ(2, message.optional_int64());
|
|
EXPECT_EQ("hello", message.optional_string());
|
|
}
|
|
|
|
void AssignParsingMergeMessages(UNITTEST::TestAllTypes* msg1,
|
|
UNITTEST::TestAllTypes* msg2,
|
|
UNITTEST::TestAllTypes* msg3) {
|
|
msg1->set_optional_int32(1);
|
|
msg2->set_optional_int64(2);
|
|
msg3->set_optional_int32(3);
|
|
msg3->set_optional_string("hello");
|
|
}
|
|
|
|
} // namespace
|
|
|
|
// Test that if an optional or required message/group field appears multiple
|
|
// times in the input, they need to be merged.
|
|
TEST(MESSAGE_TEST_NAME, ParsingMerge) {
|
|
UNITTEST::TestParsingMerge::RepeatedFieldsGenerator generator;
|
|
UNITTEST::TestAllTypes* msg1;
|
|
UNITTEST::TestAllTypes* msg2;
|
|
UNITTEST::TestAllTypes* msg3;
|
|
|
|
#define ASSIGN_REPEATED_FIELD(FIELD) \
|
|
msg1 = generator.add_##FIELD(); \
|
|
msg2 = generator.add_##FIELD(); \
|
|
msg3 = generator.add_##FIELD(); \
|
|
AssignParsingMergeMessages(msg1, msg2, msg3)
|
|
|
|
ASSIGN_REPEATED_FIELD(field1);
|
|
ASSIGN_REPEATED_FIELD(field2);
|
|
ASSIGN_REPEATED_FIELD(field3);
|
|
ASSIGN_REPEATED_FIELD(ext1);
|
|
ASSIGN_REPEATED_FIELD(ext2);
|
|
|
|
#undef ASSIGN_REPEATED_FIELD
|
|
#define ASSIGN_REPEATED_GROUP(FIELD) \
|
|
msg1 = generator.add_##FIELD()->mutable_field1(); \
|
|
msg2 = generator.add_##FIELD()->mutable_field1(); \
|
|
msg3 = generator.add_##FIELD()->mutable_field1(); \
|
|
AssignParsingMergeMessages(msg1, msg2, msg3)
|
|
|
|
ASSIGN_REPEATED_GROUP(group1);
|
|
ASSIGN_REPEATED_GROUP(group2);
|
|
|
|
#undef ASSIGN_REPEATED_GROUP
|
|
|
|
std::string buffer;
|
|
generator.SerializeToString(&buffer);
|
|
UNITTEST::TestParsingMerge parsing_merge;
|
|
parsing_merge.ParseFromString(buffer);
|
|
|
|
// Required and optional fields should be merged.
|
|
ExpectMessageMerged(parsing_merge.required_all_types());
|
|
ExpectMessageMerged(parsing_merge.optional_all_types());
|
|
ExpectMessageMerged(parsing_merge.optionalgroup().optional_group_all_types());
|
|
ExpectMessageMerged(
|
|
parsing_merge.GetExtension(UNITTEST::TestParsingMerge::optional_ext));
|
|
|
|
// Repeated fields should not be merged.
|
|
EXPECT_EQ(3, parsing_merge.repeated_all_types_size());
|
|
EXPECT_EQ(3, parsing_merge.repeatedgroup_size());
|
|
EXPECT_EQ(
|
|
3, parsing_merge.ExtensionSize(UNITTEST::TestParsingMerge::repeated_ext));
|
|
}
|
|
|
|
TEST(MESSAGE_TEST_NAME, MergeFrom) {
|
|
UNITTEST::TestAllTypes source, dest;
|
|
|
|
// Optional fields
|
|
source.set_optional_int32(1); // only source
|
|
source.set_optional_int64(2); // both source and dest
|
|
dest.set_optional_int64(3);
|
|
dest.set_optional_uint32(4); // only dest
|
|
|
|
// Optional fields with defaults
|
|
source.set_default_int32(13); // only source
|
|
source.set_default_int64(14); // both source and dest
|
|
dest.set_default_int64(15);
|
|
dest.set_default_uint32(16); // only dest
|
|
|
|
// Repeated fields
|
|
source.add_repeated_int32(5); // only source
|
|
source.add_repeated_int32(6);
|
|
source.add_repeated_int64(7); // both source and dest
|
|
source.add_repeated_int64(8);
|
|
dest.add_repeated_int64(9);
|
|
dest.add_repeated_int64(10);
|
|
dest.add_repeated_uint32(11); // only dest
|
|
dest.add_repeated_uint32(12);
|
|
|
|
dest.MergeFrom(source);
|
|
|
|
// Optional fields: source overwrites dest if source is specified
|
|
EXPECT_EQ(1, dest.optional_int32()); // only source: use source
|
|
EXPECT_EQ(2, dest.optional_int64()); // source and dest: use source
|
|
EXPECT_EQ(4, dest.optional_uint32()); // only dest: use dest
|
|
EXPECT_EQ(0, dest.optional_uint64()); // neither: use default
|
|
|
|
// Optional fields with defaults
|
|
EXPECT_EQ(13, dest.default_int32()); // only source: use source
|
|
EXPECT_EQ(14, dest.default_int64()); // source and dest: use source
|
|
EXPECT_EQ(16, dest.default_uint32()); // only dest: use dest
|
|
EXPECT_EQ(44, dest.default_uint64()); // neither: use default
|
|
|
|
// Repeated fields: concatenate source onto the end of dest
|
|
ASSERT_EQ(2, dest.repeated_int32_size());
|
|
EXPECT_EQ(5, dest.repeated_int32(0));
|
|
EXPECT_EQ(6, dest.repeated_int32(1));
|
|
ASSERT_EQ(4, dest.repeated_int64_size());
|
|
EXPECT_EQ(9, dest.repeated_int64(0));
|
|
EXPECT_EQ(10, dest.repeated_int64(1));
|
|
EXPECT_EQ(7, dest.repeated_int64(2));
|
|
EXPECT_EQ(8, dest.repeated_int64(3));
|
|
ASSERT_EQ(2, dest.repeated_uint32_size());
|
|
EXPECT_EQ(11, dest.repeated_uint32(0));
|
|
EXPECT_EQ(12, dest.repeated_uint32(1));
|
|
ASSERT_EQ(0, dest.repeated_uint64_size());
|
|
}
|
|
|
|
TEST(MESSAGE_TEST_NAME, IsInitialized) {
|
|
UNITTEST::TestIsInitialized msg;
|
|
EXPECT_TRUE(msg.IsInitialized());
|
|
UNITTEST::TestIsInitialized::SubMessage* sub_message =
|
|
msg.mutable_sub_message();
|
|
EXPECT_TRUE(msg.IsInitialized());
|
|
UNITTEST::TestIsInitialized::SubMessage::SubGroup* sub_group =
|
|
sub_message->mutable_subgroup();
|
|
EXPECT_FALSE(msg.IsInitialized());
|
|
sub_group->set_i(1);
|
|
EXPECT_TRUE(msg.IsInitialized());
|
|
}
|
|
|
|
TEST(MESSAGE_TEST_NAME, IsInitializedSplitBytestream) {
|
|
UNITTEST::TestRequired ab, c;
|
|
ab.set_a(1);
|
|
ab.set_b(2);
|
|
c.set_c(3);
|
|
|
|
// The protobuf represented by the concatenated string has all required
|
|
// fields (a,b,c) set.
|
|
std::string bytes =
|
|
ab.SerializePartialAsString() + c.SerializePartialAsString();
|
|
|
|
UNITTEST::TestRequired concatenated;
|
|
EXPECT_TRUE(concatenated.ParsePartialFromString(bytes));
|
|
EXPECT_TRUE(concatenated.IsInitialized());
|
|
|
|
UNITTEST::TestRequiredForeign fab, fc;
|
|
fab.mutable_optional_message()->set_a(1);
|
|
fab.mutable_optional_message()->set_b(2);
|
|
fc.mutable_optional_message()->set_c(3);
|
|
|
|
bytes = fab.SerializePartialAsString() + fc.SerializePartialAsString();
|
|
|
|
UNITTEST::TestRequiredForeign fconcatenated;
|
|
EXPECT_TRUE(fconcatenated.ParsePartialFromString(bytes));
|
|
EXPECT_TRUE(fconcatenated.IsInitialized());
|
|
}
|
|
|
|
TEST(MESSAGE_FACTORY_TEST_NAME, GeneratedFactoryLookup) {
|
|
EXPECT_EQ(MessageFactory::generated_factory()->GetPrototype(
|
|
UNITTEST::TestAllTypes::descriptor()),
|
|
&UNITTEST::TestAllTypes::default_instance());
|
|
}
|
|
|
|
TEST(MESSAGE_FACTORY_TEST_NAME, GeneratedFactoryUnknownType) {
|
|
// Construct a new descriptor.
|
|
DescriptorPool pool;
|
|
FileDescriptorProto file;
|
|
file.set_name("foo.proto");
|
|
file.add_message_type()->set_name("Foo");
|
|
const Descriptor* descriptor = pool.BuildFile(file)->message_type(0);
|
|
|
|
// Trying to construct it should return nullptr.
|
|
EXPECT_TRUE(MessageFactory::generated_factory()->GetPrototype(descriptor) ==
|
|
nullptr);
|
|
}
|
|
|
|
TEST(MESSAGE_TEST_NAME, MOMIParserEdgeCases) {
|
|
{
|
|
UNITTEST::TestAllTypes msg;
|
|
// Parser ends in last 16 bytes of buffer due to a 0.
|
|
std::string data;
|
|
// 12 bytes of data
|
|
for (int i = 0; i < 4; i++) absl::StrAppend(&data, "\370\1\1");
|
|
// 13 byte is terminator
|
|
data += '\0'; // Terminator
|
|
// followed by the rest of the stream
|
|
// space is ascii 32 so no end group
|
|
data += std::string(30, ' ');
|
|
io::ArrayInputStream zcis(data.data(), data.size(), 17);
|
|
io::CodedInputStream cis(&zcis);
|
|
EXPECT_TRUE(msg.MergePartialFromCodedStream(&cis));
|
|
EXPECT_EQ(cis.CurrentPosition(), 3 * 4 + 1);
|
|
}
|
|
{
|
|
// Parser ends in last 16 bytes of buffer due to a end-group.
|
|
// Must use a message that is a group. Otherwise ending on a group end is
|
|
// a failure.
|
|
UNITTEST::TestAllTypes::OptionalGroup msg;
|
|
std::string data;
|
|
for (int i = 0; i < 3; i++) absl::StrAppend(&data, "\370\1\1");
|
|
data += '\14'; // Octal end-group tag 12 (1 * 8 + 4(
|
|
data += std::string(30, ' ');
|
|
io::ArrayInputStream zcis(data.data(), data.size(), 17);
|
|
io::CodedInputStream cis(&zcis);
|
|
EXPECT_TRUE(msg.MergePartialFromCodedStream(&cis));
|
|
EXPECT_EQ(cis.CurrentPosition(), 3 * 3 + 1);
|
|
EXPECT_TRUE(cis.LastTagWas(12));
|
|
}
|
|
{
|
|
// Parser ends in last 16 bytes of buffer due to a end-group. But is inside
|
|
// a length delimited field.
|
|
// a failure.
|
|
UNITTEST::TestAllTypes::OptionalGroup msg;
|
|
std::string data = "\22\3foo";
|
|
data += '\14'; // Octal end-group tag 12 (1 * 8 + 4(
|
|
data += std::string(30, ' ');
|
|
io::ArrayInputStream zcis(data.data(), data.size(), 17);
|
|
io::CodedInputStream cis(&zcis);
|
|
EXPECT_TRUE(msg.MergePartialFromCodedStream(&cis));
|
|
EXPECT_EQ(cis.CurrentPosition(), 6);
|
|
EXPECT_TRUE(cis.LastTagWas(12));
|
|
}
|
|
{
|
|
// Parser fails when ending on 0 if from ZeroCopyInputStream
|
|
UNITTEST::TestAllTypes msg;
|
|
std::string data;
|
|
// 12 bytes of data
|
|
for (int i = 0; i < 4; i++) absl::StrAppend(&data, "\370\1\1");
|
|
// 13 byte is terminator
|
|
data += '\0'; // Terminator
|
|
data += std::string(30, ' ');
|
|
io::ArrayInputStream zcis(data.data(), data.size(), 17);
|
|
EXPECT_FALSE(msg.ParsePartialFromZeroCopyStream(&zcis));
|
|
}
|
|
}
|
|
|
|
|
|
TEST(MESSAGE_TEST_NAME, CheckSerializationWhenInterleavedExtensions) {
|
|
UNITTEST::TestExtensionRangeSerialize in_message;
|
|
|
|
in_message.set_foo_one(1);
|
|
in_message.set_foo_two(2);
|
|
in_message.set_foo_three(3);
|
|
in_message.set_foo_four(4);
|
|
|
|
in_message.SetExtension(UNITTEST::TestExtensionRangeSerialize::bar_one, 1);
|
|
in_message.SetExtension(UNITTEST::TestExtensionRangeSerialize::bar_two, 2);
|
|
in_message.SetExtension(UNITTEST::TestExtensionRangeSerialize::bar_three, 3);
|
|
in_message.SetExtension(UNITTEST::TestExtensionRangeSerialize::bar_four, 4);
|
|
in_message.SetExtension(UNITTEST::TestExtensionRangeSerialize::bar_five, 5);
|
|
|
|
std::string buffer;
|
|
in_message.SerializeToString(&buffer);
|
|
|
|
UNITTEST::TestExtensionRangeSerialize out_message;
|
|
out_message.ParseFromString(buffer);
|
|
|
|
EXPECT_EQ(1, out_message.foo_one());
|
|
EXPECT_EQ(2, out_message.foo_two());
|
|
EXPECT_EQ(3, out_message.foo_three());
|
|
EXPECT_EQ(4, out_message.foo_four());
|
|
|
|
EXPECT_EQ(1, out_message.GetExtension(
|
|
UNITTEST::TestExtensionRangeSerialize::bar_one));
|
|
EXPECT_EQ(2, out_message.GetExtension(
|
|
UNITTEST::TestExtensionRangeSerialize::bar_two));
|
|
EXPECT_EQ(3, out_message.GetExtension(
|
|
UNITTEST::TestExtensionRangeSerialize::bar_three));
|
|
EXPECT_EQ(4, out_message.GetExtension(
|
|
UNITTEST::TestExtensionRangeSerialize::bar_four));
|
|
EXPECT_EQ(5, out_message.GetExtension(
|
|
UNITTEST::TestExtensionRangeSerialize::bar_five));
|
|
}
|
|
|
|
TEST(MESSAGE_TEST_NAME, PreservesFloatingPointNegative0) {
|
|
UNITTEST::TestAllTypes in_message;
|
|
in_message.set_optional_float(-0.0f);
|
|
in_message.set_optional_double(-0.0);
|
|
std::string serialized;
|
|
EXPECT_TRUE(in_message.SerializeToString(&serialized));
|
|
UNITTEST::TestAllTypes out_message;
|
|
EXPECT_TRUE(out_message.ParseFromString(serialized));
|
|
EXPECT_EQ(in_message.optional_float(), out_message.optional_float());
|
|
EXPECT_EQ(std::signbit(in_message.optional_float()),
|
|
std::signbit(out_message.optional_float()));
|
|
EXPECT_EQ(in_message.optional_double(), out_message.optional_double());
|
|
EXPECT_EQ(std::signbit(in_message.optional_double()),
|
|
std::signbit(out_message.optional_double()));
|
|
}
|
|
|
|
TEST(MESSAGE_TEST_NAME,
|
|
RegressionTestForParseMessageReadingUninitializedLimit) {
|
|
UNITTEST::TestAllTypes in_message;
|
|
in_message.mutable_optional_nested_message();
|
|
std::string serialized = in_message.SerializeAsString();
|
|
// We expect this to have 3 bytes: two for the tag, and one for the zero size.
|
|
// Break the size by making it overlong.
|
|
ASSERT_EQ(serialized.size(), 3);
|
|
serialized.back() = '\200';
|
|
serialized += std::string(10, '\200');
|
|
EXPECT_FALSE(in_message.ParseFromString(serialized));
|
|
}
|
|
|
|
TEST(MESSAGE_TEST_NAME,
|
|
RegressionTestForParseMessageWithSizeBeyondInputFailsToPopLimit) {
|
|
UNITTEST::TestAllTypes in_message;
|
|
in_message.mutable_optional_nested_message();
|
|
std::string serialized = in_message.SerializeAsString();
|
|
// We expect this to have 3 bytes: two for the tag, and one for the zero size.
|
|
// Make the size a valid varint, but it overflows in the input.
|
|
ASSERT_EQ(serialized.size(), 3);
|
|
serialized.back() = 10;
|
|
EXPECT_FALSE(in_message.ParseFromString(serialized));
|
|
}
|
|
|
|
const uint8_t* SkipTag(const uint8_t* buf) {
|
|
while (*buf & 0x80) ++buf;
|
|
++buf;
|
|
return buf;
|
|
}
|
|
|
|
// Adds `non_canonical_bytes` bytes to the varint representation at the tail of
|
|
// the buffer.
|
|
// `buf` points to the start of the buffer, `p` points to one-past-the-end.
|
|
// Returns the new one-past-the-end pointer.
|
|
uint8_t* AddNonCanonicalBytes(const uint8_t* buf, uint8_t* p,
|
|
int non_canonical_bytes) {
|
|
// varint can have a max of 10 bytes.
|
|
while (non_canonical_bytes-- > 0 && p - buf < 10) {
|
|
// Add a dummy byte at the end.
|
|
p[-1] |= 0x80;
|
|
p[0] = 0;
|
|
++p;
|
|
}
|
|
return p;
|
|
}
|
|
|
|
std::string EncodeEnumValue(int number, int value, int non_canonical_bytes,
|
|
bool use_packed) {
|
|
uint8_t buf[100];
|
|
uint8_t* p = buf;
|
|
|
|
if (use_packed) {
|
|
p = internal::WireFormatLite::WriteEnumNoTagToArray(value, p);
|
|
p = AddNonCanonicalBytes(buf, p, non_canonical_bytes);
|
|
|
|
std::string payload(buf, p);
|
|
p = buf;
|
|
p = internal::WireFormatLite::WriteStringToArray(number, payload, p);
|
|
return std::string(buf, p);
|
|
|
|
} else {
|
|
p = internal::WireFormatLite::WriteEnumToArray(number, value, p);
|
|
p = AddNonCanonicalBytes(SkipTag(buf), p, non_canonical_bytes);
|
|
return std::string(buf, p);
|
|
}
|
|
}
|
|
|
|
std::string EncodeOverlongEnum(int number, bool use_packed) {
|
|
uint8_t buf[100];
|
|
uint8_t* p = buf;
|
|
|
|
std::string overlong(16, static_cast<char>(0x80));
|
|
if (use_packed) {
|
|
p = internal::WireFormatLite::WriteStringToArray(number, overlong, p);
|
|
return std::string(buf, p);
|
|
} else {
|
|
p = internal::WireFormatLite::WriteTagToArray(
|
|
number, internal::WireFormatLite::WIRETYPE_VARINT, p);
|
|
p = std::copy(overlong.begin(), overlong.end(), p);
|
|
return std::string(buf, p);
|
|
}
|
|
}
|
|
|
|
std::string EncodeInt32Value(int number, int32_t value,
|
|
int non_canonical_bytes) {
|
|
uint8_t buf[100];
|
|
uint8_t* p = buf;
|
|
|
|
p = internal::WireFormatLite::WriteInt32ToArray(number, value, p);
|
|
p = AddNonCanonicalBytes(SkipTag(buf), p, non_canonical_bytes);
|
|
return std::string(buf, p);
|
|
}
|
|
|
|
std::string EncodeInt64Value(int number, int64_t value, int non_canonical_bytes,
|
|
bool use_packed = false) {
|
|
uint8_t buf[100];
|
|
uint8_t* p = buf;
|
|
|
|
if (use_packed) {
|
|
p = internal::WireFormatLite::WriteInt64NoTagToArray(value, p);
|
|
p = AddNonCanonicalBytes(buf, p, non_canonical_bytes);
|
|
|
|
std::string payload(buf, p);
|
|
p = buf;
|
|
p = internal::WireFormatLite::WriteStringToArray(number, payload, p);
|
|
return std::string(buf, p);
|
|
|
|
} else {
|
|
p = internal::WireFormatLite::WriteInt64ToArray(number, value, p);
|
|
p = AddNonCanonicalBytes(SkipTag(buf), p, non_canonical_bytes);
|
|
return std::string(buf, p);
|
|
}
|
|
}
|
|
|
|
std::string EncodeOtherField() {
|
|
UNITTEST::EnumParseTester obj;
|
|
obj.set_other_field(1);
|
|
return obj.SerializeAsString();
|
|
}
|
|
|
|
template <typename T>
|
|
static std::vector<const FieldDescriptor*> GetFields() {
|
|
auto* descriptor = T::descriptor();
|
|
std::vector<const FieldDescriptor*> fields;
|
|
for (int i = 0; i < descriptor->field_count(); ++i) {
|
|
fields.push_back(descriptor->field(i));
|
|
}
|
|
for (int i = 0; i < descriptor->extension_count(); ++i) {
|
|
fields.push_back(descriptor->extension(i));
|
|
}
|
|
return fields;
|
|
}
|
|
|
|
TEST(MESSAGE_TEST_NAME, TestEnumParsers) {
|
|
UNITTEST::EnumParseTester obj;
|
|
|
|
const auto other_field = EncodeOtherField();
|
|
|
|
// Encode an enum field for many different cases and verify that it can be
|
|
// parsed as expected.
|
|
// There are:
|
|
// - optional/repeated/packed fields
|
|
// - field tags that encode in 1/2/3 bytes
|
|
// - canonical and non-canonical encodings of the varint
|
|
// - last vs not last field
|
|
// - label combinations to trigger different parsers: sequential, small
|
|
// sequential, non-validated.
|
|
|
|
const std::vector<const FieldDescriptor*> fields =
|
|
GetFields<UNITTEST::EnumParseTester>();
|
|
|
|
constexpr int kInvalidValue = 0x900913;
|
|
auto* ref = obj.GetReflection();
|
|
PROTOBUF_UNUSED auto* descriptor = obj.descriptor();
|
|
for (bool use_packed : {false, true}) {
|
|
SCOPED_TRACE(use_packed);
|
|
for (bool use_tail_field : {false, true}) {
|
|
SCOPED_TRACE(use_tail_field);
|
|
for (int non_canonical_bytes = 0; non_canonical_bytes < 9;
|
|
++non_canonical_bytes) {
|
|
SCOPED_TRACE(non_canonical_bytes);
|
|
for (bool add_garbage_bits : {false, true}) {
|
|
if (add_garbage_bits && non_canonical_bytes != 9) {
|
|
// We only add garbage on the 10th byte.
|
|
continue;
|
|
}
|
|
SCOPED_TRACE(add_garbage_bits);
|
|
for (auto field : fields) {
|
|
if (field->name() == "other_field") continue;
|
|
if (!field->is_repeated() && use_packed) continue;
|
|
SCOPED_TRACE(field->full_name());
|
|
const auto* enum_desc = field->enum_type();
|
|
for (int e = 0; e < enum_desc->value_count(); ++e) {
|
|
const auto* value_desc = enum_desc->value(e);
|
|
if (value_desc->number() < 0 && non_canonical_bytes > 0) {
|
|
// Negative numbers only have a canonical representation.
|
|
continue;
|
|
}
|
|
SCOPED_TRACE(value_desc->number());
|
|
ABSL_CHECK_NE(value_desc->number(), kInvalidValue)
|
|
<< "Invalid value is a real label.";
|
|
auto encoded =
|
|
EncodeEnumValue(field->number(), value_desc->number(),
|
|
non_canonical_bytes, use_packed);
|
|
if (add_garbage_bits) {
|
|
// These bits should be discarded even in the `false` case.
|
|
encoded.back() |= 0b0111'1110;
|
|
}
|
|
if (use_tail_field) {
|
|
// Make sure that fields after this one can be parsed too. ie
|
|
// test that the "next" jump is correct too.
|
|
encoded += other_field;
|
|
}
|
|
|
|
EXPECT_TRUE(obj.ParseFromString(encoded));
|
|
if (field->is_repeated()) {
|
|
ASSERT_EQ(ref->FieldSize(obj, field), 1);
|
|
EXPECT_EQ(ref->GetRepeatedEnumValue(obj, field, 0),
|
|
value_desc->number());
|
|
} else {
|
|
EXPECT_TRUE(ref->HasField(obj, field));
|
|
EXPECT_EQ(ref->GetEnumValue(obj, field), value_desc->number());
|
|
}
|
|
auto& unknown = ref->GetUnknownFields(obj);
|
|
ASSERT_EQ(unknown.field_count(), 0);
|
|
}
|
|
|
|
{
|
|
SCOPED_TRACE("Invalid value");
|
|
// Try an invalid value, which should go to the unknown fields.
|
|
EXPECT_TRUE(obj.ParseFromString(
|
|
EncodeEnumValue(field->number(), kInvalidValue,
|
|
non_canonical_bytes, use_packed)));
|
|
if (field->is_repeated()) {
|
|
ASSERT_EQ(ref->FieldSize(obj, field), 0);
|
|
} else {
|
|
EXPECT_FALSE(ref->HasField(obj, field));
|
|
EXPECT_EQ(ref->GetEnumValue(obj, field),
|
|
enum_desc->value(0)->number());
|
|
}
|
|
auto& unknown = ref->GetUnknownFields(obj);
|
|
ASSERT_EQ(unknown.field_count(), 1);
|
|
EXPECT_EQ(unknown.field(0).number(), field->number());
|
|
EXPECT_EQ(unknown.field(0).type(), unknown.field(0).TYPE_VARINT);
|
|
EXPECT_EQ(unknown.field(0).varint(), kInvalidValue);
|
|
}
|
|
{
|
|
SCOPED_TRACE("Overlong varint");
|
|
// Try an overlong varint. It should fail parsing, but not trigger
|
|
// any sanitizer warning.
|
|
EXPECT_FALSE(obj.ParseFromString(
|
|
EncodeOverlongEnum(field->number(), use_packed)));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST(MESSAGE_TEST_NAME, TestEnumParserForUnknownEnumValue) {
|
|
DynamicMessageFactory factory;
|
|
std::unique_ptr<Message> dynamic(
|
|
factory.GetPrototype(UNITTEST::EnumParseTester::descriptor())->New());
|
|
|
|
UNITTEST::EnumParseTester non_dynamic;
|
|
|
|
// For unknown enum values, for consistency we must include the
|
|
// int32_t enum value in the unknown field set, which might not be exactly the
|
|
// same as the input.
|
|
PROTOBUF_UNUSED auto* descriptor = non_dynamic.descriptor();
|
|
|
|
const std::vector<const FieldDescriptor*> fields =
|
|
GetFields<UNITTEST::EnumParseTester>();
|
|
|
|
for (bool use_dynamic : {false, true}) {
|
|
SCOPED_TRACE(use_dynamic);
|
|
for (auto field : fields) {
|
|
if (field->name() == "other_field") continue;
|
|
SCOPED_TRACE(field->full_name());
|
|
for (bool use_packed : {false, true}) {
|
|
SCOPED_TRACE(use_packed);
|
|
if (!field->is_repeated() && use_packed) continue;
|
|
|
|
// -2 is an invalid enum value on all the tests here.
|
|
// We will encode -2 as a positive int64 that is equivalent to
|
|
// int32_t{-2} when truncated.
|
|
constexpr int64_t minus_2_non_canonical =
|
|
static_cast<int64_t>(static_cast<uint32_t>(int32_t{-2}));
|
|
static_assert(minus_2_non_canonical != -2, "");
|
|
std::string encoded = EncodeInt64Value(
|
|
field->number(), minus_2_non_canonical, 0, use_packed);
|
|
|
|
auto& obj = use_dynamic ? *dynamic : non_dynamic;
|
|
ASSERT_TRUE(obj.ParseFromString(encoded));
|
|
|
|
auto& unknown = obj.GetReflection()->GetUnknownFields(obj);
|
|
ASSERT_EQ(unknown.field_count(), 1);
|
|
EXPECT_EQ(unknown.field(0).number(), field->number());
|
|
EXPECT_EQ(unknown.field(0).type(), unknown.field(0).TYPE_VARINT);
|
|
EXPECT_EQ(unknown.field(0).varint(), int64_t{-2});
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
std::string EncodeBoolValue(int number, bool value, int non_canonical_bytes) {
|
|
uint8_t buf[100];
|
|
uint8_t* p = buf;
|
|
|
|
p = internal::WireFormatLite::WriteBoolToArray(number, value, p);
|
|
p = AddNonCanonicalBytes(SkipTag(buf), p, non_canonical_bytes);
|
|
return std::string(buf, p);
|
|
}
|
|
|
|
TEST(MESSAGE_TEST_NAME, TestBoolParsers) {
|
|
UNITTEST::BoolParseTester obj;
|
|
|
|
const auto other_field = EncodeOtherField();
|
|
|
|
// Encode a boolean field for many different cases and verify that it can be
|
|
// parsed as expected.
|
|
// There are:
|
|
// - optional/repeated/packed fields
|
|
// - field tags that encode in 1/2/3 bytes
|
|
// - canonical and non-canonical encodings of the varint
|
|
// - last vs not last field
|
|
|
|
const std::vector<const FieldDescriptor*> fields =
|
|
GetFields<UNITTEST::BoolParseTester>();
|
|
|
|
auto* ref = obj.GetReflection();
|
|
PROTOBUF_UNUSED auto* descriptor = obj.descriptor();
|
|
for (bool use_tail_field : {false, true}) {
|
|
SCOPED_TRACE(use_tail_field);
|
|
for (int non_canonical_bytes = 0; non_canonical_bytes < 10;
|
|
++non_canonical_bytes) {
|
|
SCOPED_TRACE(non_canonical_bytes);
|
|
for (bool add_garbage_bits : {false, true}) {
|
|
if (add_garbage_bits && non_canonical_bytes != 9) {
|
|
// We only add garbage on the 10th byte.
|
|
continue;
|
|
}
|
|
SCOPED_TRACE(add_garbage_bits);
|
|
for (auto field : fields) {
|
|
if (field->name() == "other_field") continue;
|
|
SCOPED_TRACE(field->full_name());
|
|
for (bool value : {false, true}) {
|
|
SCOPED_TRACE(value);
|
|
auto encoded =
|
|
EncodeBoolValue(field->number(), value, non_canonical_bytes);
|
|
if (add_garbage_bits) {
|
|
// These bits should be discarded even in the `false` case.
|
|
encoded.back() |= 0b0111'1110;
|
|
}
|
|
if (use_tail_field) {
|
|
// Make sure that fields after this one can be parsed too. ie test
|
|
// that the "next" jump is correct too.
|
|
encoded += other_field;
|
|
}
|
|
|
|
EXPECT_TRUE(obj.ParseFromString(encoded));
|
|
if (field->is_repeated()) {
|
|
ASSERT_EQ(ref->FieldSize(obj, field), 1);
|
|
EXPECT_EQ(ref->GetRepeatedBool(obj, field, 0), value);
|
|
} else {
|
|
EXPECT_TRUE(ref->HasField(obj, field));
|
|
EXPECT_EQ(ref->GetBool(obj, field), value)
|
|
<< testing::PrintToString(encoded);
|
|
}
|
|
auto& unknown = ref->GetUnknownFields(obj);
|
|
ASSERT_EQ(unknown.field_count(), 0);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST(MESSAGE_TEST_NAME, TestInt32Parsers) {
|
|
UNITTEST::Int32ParseTester obj;
|
|
|
|
const auto other_field = EncodeOtherField();
|
|
|
|
// Encode an int32 field for many different cases and verify that it can be
|
|
// parsed as expected.
|
|
// There are:
|
|
// - optional/repeated/packed fields
|
|
// - field tags that encode in 1/2/3 bytes
|
|
// - canonical and non-canonical encodings of the varint
|
|
// - last vs not last field
|
|
|
|
const std::vector<const FieldDescriptor*> fields =
|
|
GetFields<UNITTEST::Int32ParseTester>();
|
|
|
|
auto* ref = obj.GetReflection();
|
|
PROTOBUF_UNUSED auto* descriptor = obj.descriptor();
|
|
for (bool use_tail_field : {false, true}) {
|
|
SCOPED_TRACE(use_tail_field);
|
|
for (int non_canonical_bytes = 0; non_canonical_bytes < 10;
|
|
++non_canonical_bytes) {
|
|
SCOPED_TRACE(non_canonical_bytes);
|
|
for (bool add_garbage_bits : {false, true}) {
|
|
if (add_garbage_bits && non_canonical_bytes != 9) {
|
|
// We only add garbage on the 10th byte.
|
|
continue;
|
|
}
|
|
SCOPED_TRACE(add_garbage_bits);
|
|
for (auto field : fields) {
|
|
if (field->name() == "other_field") continue;
|
|
SCOPED_TRACE(field->full_name());
|
|
for (int32_t value : {1, 0, -1, (std::numeric_limits<int32_t>::min)(),
|
|
(std::numeric_limits<int32_t>::max)()}) {
|
|
SCOPED_TRACE(value);
|
|
auto encoded =
|
|
EncodeInt32Value(field->number(), value, non_canonical_bytes);
|
|
if (add_garbage_bits) {
|
|
// These bits should be discarded even in the `false` case.
|
|
encoded.back() |= 0b0111'1110;
|
|
}
|
|
if (use_tail_field) {
|
|
// Make sure that fields after this one can be parsed too. ie test
|
|
// that the "next" jump is correct too.
|
|
encoded += other_field;
|
|
}
|
|
|
|
EXPECT_TRUE(obj.ParseFromString(encoded));
|
|
if (field->is_repeated()) {
|
|
ASSERT_EQ(ref->FieldSize(obj, field), 1);
|
|
EXPECT_EQ(ref->GetRepeatedInt32(obj, field, 0), value);
|
|
} else {
|
|
EXPECT_TRUE(ref->HasField(obj, field));
|
|
EXPECT_EQ(ref->GetInt32(obj, field), value)
|
|
<< testing::PrintToString(encoded);
|
|
}
|
|
auto& unknown = ref->GetUnknownFields(obj);
|
|
ASSERT_EQ(unknown.field_count(), 0);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST(MESSAGE_TEST_NAME, TestInt64Parsers) {
|
|
UNITTEST::Int64ParseTester obj;
|
|
|
|
const auto other_field = EncodeOtherField();
|
|
|
|
// Encode an int64 field for many different cases and verify that it can be
|
|
// parsed as expected.
|
|
// There are:
|
|
// - optional/repeated/packed fields
|
|
// - field tags that encode in 1/2/3 bytes
|
|
// - canonical and non-canonical encodings of the varint
|
|
// - last vs not last field
|
|
|
|
const std::vector<const FieldDescriptor*> fields =
|
|
GetFields<UNITTEST::Int64ParseTester>();
|
|
|
|
auto* ref = obj.GetReflection();
|
|
PROTOBUF_UNUSED auto* descriptor = obj.descriptor();
|
|
for (bool use_tail_field : {false, true}) {
|
|
SCOPED_TRACE(use_tail_field);
|
|
for (int non_canonical_bytes = 0; non_canonical_bytes < 10;
|
|
++non_canonical_bytes) {
|
|
SCOPED_TRACE(non_canonical_bytes);
|
|
for (bool add_garbage_bits : {false, true}) {
|
|
if (add_garbage_bits && non_canonical_bytes != 9) {
|
|
// We only add garbage on the 10th byte.
|
|
continue;
|
|
}
|
|
SCOPED_TRACE(add_garbage_bits);
|
|
for (auto field : fields) {
|
|
if (field->name() == "other_field") continue;
|
|
SCOPED_TRACE(field->full_name());
|
|
for (int64_t value : {int64_t{1}, int64_t{0}, int64_t{-1},
|
|
(std::numeric_limits<int64_t>::min)(),
|
|
(std::numeric_limits<int64_t>::max)()}) {
|
|
SCOPED_TRACE(value);
|
|
auto encoded =
|
|
EncodeInt64Value(field->number(), value, non_canonical_bytes);
|
|
if (add_garbage_bits) {
|
|
// These bits should be discarded even in the `false` case.
|
|
encoded.back() |= 0b0111'1110;
|
|
}
|
|
if (use_tail_field) {
|
|
// Make sure that fields after this one can be parsed too. ie test
|
|
// that the "next" jump is correct too.
|
|
encoded += other_field;
|
|
}
|
|
|
|
EXPECT_TRUE(obj.ParseFromString(encoded));
|
|
if (field->is_repeated()) {
|
|
ASSERT_EQ(ref->FieldSize(obj, field), 1);
|
|
EXPECT_EQ(ref->GetRepeatedInt64(obj, field, 0), value);
|
|
} else {
|
|
EXPECT_TRUE(ref->HasField(obj, field));
|
|
EXPECT_EQ(ref->GetInt64(obj, field), value)
|
|
<< testing::PrintToString(encoded);
|
|
}
|
|
auto& unknown = ref->GetUnknownFields(obj);
|
|
ASSERT_EQ(unknown.field_count(), 0);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST(MESSAGE_TEST_NAME, IsDefaultInstance) {
|
|
UNITTEST::TestAllTypes msg;
|
|
const auto& default_msg = UNITTEST::TestAllTypes::default_instance();
|
|
const auto* r = msg.GetReflection();
|
|
EXPECT_TRUE(r->IsDefaultInstance(default_msg));
|
|
EXPECT_FALSE(r->IsDefaultInstance(msg));
|
|
}
|
|
|
|
std::string EncodeStringValue(int number, const std::string& value) {
|
|
uint8_t buf[100];
|
|
return std::string(
|
|
buf, internal::WireFormatLite::WriteStringToArray(number, value, buf));
|
|
}
|
|
|
|
class TestInputStream final : public io::ZeroCopyInputStream {
|
|
public:
|
|
explicit TestInputStream(absl::string_view payload, size_t break_pos)
|
|
: payload_(payload), break_pos_(break_pos) {}
|
|
|
|
bool Next(const void** data, int* size) override {
|
|
if (payload_.empty()) return false;
|
|
const auto to_consume = payload_.substr(0, break_pos_);
|
|
*data = to_consume.data();
|
|
*size = to_consume.size();
|
|
payload_.remove_prefix(to_consume.size());
|
|
// The next time will consume the rest.
|
|
break_pos_ = payload_.npos;
|
|
|
|
return true;
|
|
}
|
|
|
|
void BackUp(int) override { ABSL_CHECK(false); }
|
|
bool Skip(int) override {
|
|
ABSL_CHECK(false);
|
|
return false;
|
|
}
|
|
int64_t ByteCount() const override {
|
|
ABSL_CHECK(false);
|
|
return 0;
|
|
}
|
|
|
|
private:
|
|
absl::string_view payload_;
|
|
size_t break_pos_;
|
|
};
|
|
|
|
template <typename T>
|
|
static const internal::TcParseTableBase* GetTableIfAvailable(...) {
|
|
return nullptr;
|
|
}
|
|
|
|
template <typename T>
|
|
static const internal::TcParseTableBase* GetTableIfAvailable(
|
|
decltype(internal::TcParser::GetTable<T>())) {
|
|
return internal::TcParser::GetTable<T>();
|
|
}
|
|
|
|
TEST(MESSAGE_TEST_NAME, TestRegressionInlinedStringAuxIdxMismatchOnFastParser) {
|
|
using Proto = UNITTEST::InlinedStringIdxRegressionProto;
|
|
|
|
auto* table = GetTableIfAvailable<Proto>(nullptr);
|
|
// Only test when TDP is on, and we have these fields inlined.
|
|
if (table != nullptr &&
|
|
table->fast_entry(1)->target() == internal::TcParser::FastSiS1) {
|
|
// optional string str1 = 1;
|
|
EXPECT_EQ(table->fast_entry(1)->bits.aux_idx(), 1);
|
|
// optional InlinedStringIdxRegressionProto sub = 2;
|
|
EXPECT_EQ(table->fast_entry(2)->bits.aux_idx(), 2);
|
|
// optional string str2 = 3;
|
|
// The aux_idx points to the inlined_string_idx and not the actual aux_idx.
|
|
EXPECT_EQ(table->fast_entry(3)->bits.aux_idx(), 2);
|
|
// optional string str3 = 4;
|
|
// The aux_idx points to the inlined_string_idx and not the actual aux_idx.
|
|
EXPECT_EQ(table->fast_entry(0)->bits.aux_idx(), 3);
|
|
}
|
|
|
|
std::string encoded;
|
|
{
|
|
Proto proto;
|
|
// We use strings longer than SSO.
|
|
proto.set_str1(std::string(100, 'a'));
|
|
proto.set_str2(std::string(100, 'a'));
|
|
proto.set_str3(std::string(100, 'a'));
|
|
encoded = proto.SerializeAsString();
|
|
}
|
|
Arena arena;
|
|
auto* proto = Arena::CreateMessage<Proto>(&arena);
|
|
// We don't alter donation here, so it works even if the idx are bad.
|
|
ASSERT_TRUE(proto->ParseFromString(encoded));
|
|
// Now we alter donation bits. str2's bit (#2) will be off, but its aux_idx
|
|
// (#3) will point to a donated string.
|
|
proto = Arena::CreateMessage<Proto>(&arena);
|
|
proto->mutable_str1();
|
|
proto->mutable_str2();
|
|
proto->mutable_str3();
|
|
// With the bug, this breaks the cleanup list, causing UB on arena
|
|
// destruction.
|
|
ASSERT_TRUE(proto->ParseFromString(encoded));
|
|
}
|
|
|
|
TEST(MESSAGE_TEST_NAME, TestRepeatedStringParsers) {
|
|
google::protobuf::Arena arena;
|
|
|
|
const std::string sample =
|
|
"abcdefghijklmnopqrstuvwxyz"
|
|
"ABCDEFGHIJKLMNOPQRSTUVWXYZ";
|
|
|
|
PROTOBUF_UNUSED const auto* const descriptor =
|
|
UNITTEST::StringParseTester::descriptor();
|
|
|
|
const std::vector<const FieldDescriptor*> fields =
|
|
GetFields<UNITTEST::StringParseTester>();
|
|
|
|
static const size_t sso_capacity = std::string().capacity();
|
|
if (sso_capacity == 0) GTEST_SKIP();
|
|
// SSO, !SSO, and off-by-one just in case
|
|
for (size_t size :
|
|
{sso_capacity - 1, sso_capacity, sso_capacity + 1, sso_capacity + 2}) {
|
|
SCOPED_TRACE(size);
|
|
const std::string value = sample.substr(0, size);
|
|
for (auto field : fields) {
|
|
SCOPED_TRACE(field->full_name());
|
|
const auto encoded = EncodeStringValue(field->number(), sample) +
|
|
EncodeStringValue(field->number(), value);
|
|
// Check for different breaks in the input stream to test cases where
|
|
// the payload can be read and can't be read in one go.
|
|
for (size_t i = 1; i <= encoded.size(); ++i) {
|
|
TestInputStream input_stream(encoded, i);
|
|
|
|
auto& obj = *arena.CreateMessage<UNITTEST::StringParseTester>(&arena);
|
|
auto* ref = obj.GetReflection();
|
|
EXPECT_TRUE(obj.ParseFromZeroCopyStream(&input_stream));
|
|
if (field->is_repeated()) {
|
|
ASSERT_EQ(ref->FieldSize(obj, field), 2);
|
|
EXPECT_EQ(ref->GetRepeatedString(obj, field, 0), sample);
|
|
EXPECT_EQ(ref->GetRepeatedString(obj, field, 1), value);
|
|
} else {
|
|
EXPECT_EQ(ref->GetString(obj, field), value);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST(MESSAGE_TEST_NAME, TestRegressionOnParseFailureNotSettingHasBits) {
|
|
std::string single_field;
|
|
// We use blocks because we want fully new instances of the proto. We are
|
|
// testing .Clear(), so we can't use it to set up the test.
|
|
{
|
|
UNITTEST::TestAllTypes message;
|
|
message.set_optional_int32(17);
|
|
single_field = message.SerializeAsString();
|
|
}
|
|
const auto validate_message = [](auto& message) {
|
|
if (!message.has_optional_int32()) {
|
|
EXPECT_EQ(message.optional_int32(), 0);
|
|
}
|
|
message.Clear();
|
|
EXPECT_FALSE(message.has_optional_int32());
|
|
EXPECT_EQ(message.optional_int32(), 0);
|
|
};
|
|
{
|
|
// Verify the setup is correct.
|
|
UNITTEST::TestAllTypes message;
|
|
EXPECT_FALSE(message.has_optional_int32());
|
|
EXPECT_EQ(message.optional_int32(), 0);
|
|
EXPECT_TRUE(message.ParseFromString(single_field));
|
|
validate_message(message);
|
|
}
|
|
{
|
|
// Run the regression.
|
|
// These are the steps:
|
|
// - The stream contains a fast field, and then a failure in MiniParse
|
|
// - The parsing fails.
|
|
// - We call clear.
|
|
// - The fast field should be reset.
|
|
UNITTEST::TestAllTypes message;
|
|
EXPECT_FALSE(message.has_optional_int32());
|
|
EXPECT_EQ(message.optional_int32(), 0);
|
|
// The second tag will fail to parse because it has too many continuation
|
|
// bits.
|
|
auto with_error =
|
|
absl::StrCat(single_field, std::string(100, static_cast<char>(0x80)));
|
|
EXPECT_FALSE(message.ParseFromString(with_error));
|
|
validate_message(message);
|
|
}
|
|
}
|
|
|
|
} // namespace protobuf
|
|
} // namespace google
|
|
|
|
#include "google/protobuf/port_undef.inc"
|