669 lines
24 KiB
C++
Raw Normal View History

2024-03-19 17:45:12 +08:00
/**************************************************************************************/
/* */
/* Visualization Library */
/* http://visualizationlibrary.org */
/* */
/* Copyright (c) 2005-2020, Michele Bosi */
/* All rights reserved. */
/* */
/* Redistribution and use in source and binary forms, with or without modification, */
/* are permitted provided that the following conditions are met: */
/* */
/* - Redistributions of source code must retain the above copyright notice, this */
/* list of conditions and the following disclaimer. */
/* */
/* - Redistributions in binary form must reproduce the above copyright notice, this */
/* list of conditions and the following disclaimer in the documentation and/or */
/* other materials provided with the distribution. */
/* */
/* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND */
/* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED */
/* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */
/* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR */
/* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES */
/* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; */
/* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON */
/* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT */
/* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS */
/* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */
/* */
/**************************************************************************************/
#ifndef Matrix3_INCLUDE_ONCE
#define Matrix3_INCLUDE_ONCE
#include <vlCore/Vector3.hpp>
#include <vlCore/Matrix2.hpp>
namespace vl
{
//-----------------------------------------------------------------------------
// Matrix3
//-----------------------------------------------------------------------------
/**
* The Matrix3 class is a template class that implements a generic 3x3 matrix, see also vl::dmat3, vl::fmat3, vl::umat3, vl::imat3.
* \sa Vector4, Vector3, Vector2, Matrix4, Matrix2
*/
template<typename T_Scalar>
class Matrix3
{
public:
typedef T_Scalar scalar_type;
//-----------------------------------------------------------------------------
template<typename T>
explicit Matrix3(const Matrix3<T>& m)
{
e(0,0) = (T_Scalar)m.e(0,0); e(1,0) = (T_Scalar)m.e(1,0); e(2,0) = (T_Scalar)m.e(2,0);
e(0,1) = (T_Scalar)m.e(0,1); e(1,1) = (T_Scalar)m.e(1,1); e(2,1) = (T_Scalar)m.e(2,1);
e(0,2) = (T_Scalar)m.e(0,2); e(1,2) = (T_Scalar)m.e(1,2); e(2,2) = (T_Scalar)m.e(2,2);
}
//-----------------------------------------------------------------------------
Matrix3()
{
setIdentity();
}
//-----------------------------------------------------------------------------
explicit Matrix3(T_Scalar n)
{
setIdentity();
e(0,0) = e(1,1) = e(2,2) = n;
}
//-----------------------------------------------------------------------------
explicit Matrix3(T_Scalar e00, T_Scalar e01, T_Scalar e02,
T_Scalar e10, T_Scalar e11, T_Scalar e12,
T_Scalar e20, T_Scalar e21, T_Scalar e22)
{
e(0,0) = e00; e(0,1) = e01; e(0,2) = e02;
e(1,0) = e10; e(1,1) = e11; e(1,2) = e12;
e(2,0) = e20; e(2,1) = e21; e(2,2) = e22;
}
//-----------------------------------------------------------------------------
Matrix3& fill(T_Scalar val)
{
e(0,0) = e(1,0) = e(2,0) =
e(0,1) = e(1,1) = e(2,1) =
e(0,2) = e(1,2) = e(2,2) = val;
return *this;
}
//-----------------------------------------------------------------------------
T_Scalar diff(const Matrix3& other) const
{
T_Scalar err = 0;
for(int i=0; i<3; ++i)
for(int j=0; j<3; ++j)
if (e(j,i) > other.e(j,i)) // avoid fabs/abs
err += e(j,i) - other.e(j,i);
else
err += other.e(j,i) - e(j,i);
return err;
}
//-----------------------------------------------------------------------------
Vector2<T_Scalar> getX() const
{
Vector2<T_Scalar> v;
v.x() = e(0,0);
v.y() = e(1,0);
return v;
}
//-----------------------------------------------------------------------------
Vector2<T_Scalar> getY() const
{
Vector2<T_Scalar> v;
v.x() = e(0,1);
v.y() = e(1,1);
return v;
}
//-----------------------------------------------------------------------------
Vector2<T_Scalar> getT() const
{
Vector2<T_Scalar> v;
v.x() = e(0,2);
v.y() = e(1,2);
return v;
}
//-----------------------------------------------------------------------------
Matrix3& setX(const Vector2<T_Scalar>& v)
{
e(0,0) = v.x();
e(1,0) = v.y();
return *this;
}
//-----------------------------------------------------------------------------
Matrix3& setY(const Vector2<T_Scalar>& v)
{
e(0,1) = v.x();
e(1,1) = v.y();
return *this;
}
//-----------------------------------------------------------------------------
Matrix3& setT(const Vector2<T_Scalar>& v)
{
e(0,2) = v.x();
e(1,2) = v.y();
return *this;
}
//-----------------------------------------------------------------------------
bool operator==(const Matrix3& m) const
{
return memcmp(m.mVec, mVec, sizeof(T_Scalar)*9) == 0;
}
//-----------------------------------------------------------------------------
bool operator!=(const Matrix3& m) const
{
return !operator==(m);
}
//-----------------------------------------------------------------------------
Matrix3& operator=(const Matrix3& m)
{
memcpy(mVec, m.mVec, sizeof(T_Scalar)*9);
return *this;
}
//-----------------------------------------------------------------------------
Matrix3 operator+(const Matrix3& m) const
{
Matrix3 t;
for(int i=0; i<3; ++i)
for(int j=0; j<3; ++j)
t.e(j,i) = e(j,i) + m.e(j,i);
return t;
}
//-----------------------------------------------------------------------------
Matrix3& operator+=(const Matrix3& m)
{
for(int i=0; i<3; ++i)
for(int j=0; j<3; ++j)
e(j,i) += m.e(j,i);
return *this;
}
//-----------------------------------------------------------------------------
Matrix3 operator-(const Matrix3& m) const
{
Matrix3 t;
for(int i=0; i<3; ++i)
for(int j=0; j<3; ++j)
t.e(j,i) = e(j,i) - m.e(j,i);
return t;
}
//-----------------------------------------------------------------------------
Matrix3& operator-=(const Matrix3& m)
{
for(int i=0; i<3; ++i)
for(int j=0; j<3; ++j)
e(j,i) -= m.e(j,i);
return *this;
}
//-----------------------------------------------------------------------------
Matrix3& operator*=(const Matrix3& m)
{
return postMultiply(m);
}
//-----------------------------------------------------------------------------
Matrix3 operator-() const
{
Matrix3 t;
for(int i=0; i<3; ++i)
for(int j=0; j<3; ++j)
t.e(j,i) = -e(j,i);
return t;
}
//-----------------------------------------------------------------------------
Matrix3 operator+(T_Scalar d) const
{
Matrix3 t;
for(int i=0; i<3; ++i)
for(int j=0; j<3; ++j)
t.e(j,i) = e(j,i) + d;
return t;
}
//-----------------------------------------------------------------------------
Matrix3& operator+=(T_Scalar d)
{
for(int i=0; i<3; ++i)
for(int j=0; j<3; ++j)
e(j,i) += d;
return *this;
}
//-----------------------------------------------------------------------------
Matrix3 operator-(T_Scalar d) const
{
Matrix3 t;
for(int i=0; i<3; ++i)
for(int j=0; j<3; ++j)
t.e(j,i) = e(j,i) - d;
return t;
}
//-----------------------------------------------------------------------------
Matrix3& operator-=(T_Scalar d)
{
for(int i=0; i<3; ++i)
for(int j=0; j<3; ++j)
e(j,i) -= d;
return *this;
}
//-----------------------------------------------------------------------------
Matrix3 operator*(T_Scalar d) const
{
Matrix3 t;
for(int i=0; i<3; ++i)
for(int j=0; j<3; ++j)
t.e(j,i) = e(j,i) * d;
return t;
}
//-----------------------------------------------------------------------------
Matrix3& operator*=(T_Scalar d)
{
for(int i=0; i<3; ++i)
for(int j=0; j<3; ++j)
e(j,i) *= d;
return *this;
}
//-----------------------------------------------------------------------------
Matrix3 operator/(T_Scalar d) const
{
d = (T_Scalar)1 / d;
Matrix3 t;
for(int i=0; i<3; ++i)
for(int j=0; j<3; ++j)
t.e(j,i) = e(j,i) * d;
return t;
}
//-----------------------------------------------------------------------------
Matrix3& operator/=(T_Scalar d)
{
d = (T_Scalar)1 / d;
for(int i=0; i<3; ++i)
for(int j=0; j<3; ++j)
e(j,i) *= d;
return *this;
}
//-----------------------------------------------------------------------------
bool isIdentity() const
{
Matrix3 i;
return memcmp(ptr(), i.ptr(), sizeof(T_Scalar)*9) == 0;
}
//-----------------------------------------------------------------------------
Matrix2<T_Scalar> get2x2() const
{
Matrix2<T_Scalar> t;
t.e(0,0) = e(0,0); t.e(1,0) = e(1,0);
t.e(0,1) = e(0,1); t.e(1,1) = e(1,1);
return t;
}
//-----------------------------------------------------------------------------
//! This writes only on the upper 2x2 part of the matrix without touching the last row and column.
void set2x2(const Matrix2<T_Scalar>& m)
{
e(0,0) = m.e(0,0); e(1,0) = m.e(1,0);
e(0,1) = m.e(0,1); e(1,1) = m.e(1,1);
}
//-----------------------------------------------------------------------------
T_Scalar* ptr()
{
return &e(0,0);
}
//-----------------------------------------------------------------------------
const T_Scalar* ptr() const
{
return &e(0,0);
}
//-----------------------------------------------------------------------------
Matrix3& transpose()
{
T_Scalar tmp;
for(int i=0; i<3; ++i)
{
for(int j=i; j<3; ++j)
{
tmp = e(j,i);
e(j,i) = e(i,j);
e(i,j) = tmp;
}
}
return *this;
}
//-----------------------------------------------------------------------------
Matrix3 getTransposed() const
{
Matrix3 m;
for(int i=0; i<3; ++i)
for(int j=0; j<3; ++j)
m.e(j,i) = e(i,j);
return m;
}
//-----------------------------------------------------------------------------
Matrix3& getTransposed(Matrix3& dest) const
{
for(int i=0; i<3; ++i)
for(int j=0; j<3; ++j)
dest.e(j,i) = e(i,j);
return dest;
}
//-----------------------------------------------------------------------------
bool isNull() const
{
for(int i=0; i<3; ++i)
for(int j=0; j<3; ++j)
if(mVec[j][i] != 0)
return false;
return true;
}
//-----------------------------------------------------------------------------
Matrix3& setNull()
{
fill(0);
return *this;
}
//-----------------------------------------------------------------------------
static Matrix3& getNull(Matrix3& out)
{
out.fill(0);
return out;
}
//-----------------------------------------------------------------------------
static Matrix3 getNull()
{
return Matrix3().fill(0);
}
//-----------------------------------------------------------------------------
Matrix3& setIdentity()
{
static const T_Scalar I3d[] =
{
(T_Scalar)1, (T_Scalar)0, (T_Scalar)0,
(T_Scalar)0, (T_Scalar)1, (T_Scalar)0,
(T_Scalar)0, (T_Scalar)0, (T_Scalar)1,
};
memcpy(mVec, I3d, sizeof(T_Scalar)*9);
return *this;
}
//-----------------------------------------------------------------------------
static Matrix3 getIdentity()
{
return Matrix3();
}
//-----------------------------------------------------------------------------
static Matrix3& getIdentity(Matrix3& out)
{
out.setIdentity();
return out;
}
//-----------------------------------------------------------------------------
T_Scalar getInverse(Matrix3& dest) const;
//-----------------------------------------------------------------------------
Matrix3 getInverse(T_Scalar *determinant=NULL) const
{
Matrix3 tmp;
T_Scalar det = getInverse(tmp);
if (determinant)
*determinant = det;
return tmp;
}
//-----------------------------------------------------------------------------
Matrix3& invert(T_Scalar *determinant=NULL)
{
T_Scalar det = getInverse(*this);
if (determinant)
*determinant = det;
return *this;
}
//-----------------------------------------------------------------------------
static Matrix3 getRotation(T_Scalar degrees);
//-----------------------------------------------------------------------------
Matrix3& rotate(T_Scalar degrees)
{
return preMultiply(getRotation(degrees));
}
//-----------------------------------------------------------------------------
static Matrix3& getTranslation(Matrix3& out, const Vector2<T_Scalar>& v)
{
return getTranslation(out, v.x(), v.y());
}
//-----------------------------------------------------------------------------
static Matrix3 getTranslation(const Vector2<T_Scalar>& v)
{
return getTranslation(v.x(), v.y());
}
//-----------------------------------------------------------------------------
static Matrix3 getTranslation(T_Scalar x, T_Scalar y)
{
Matrix3 m;
return getTranslation(m, x, y);
}
//-----------------------------------------------------------------------------
static Matrix3& getTranslation(Matrix3& out, T_Scalar x, T_Scalar y)
{
out.setIdentity();
out.e(0,2) = x;
out.e(1,2) = y;
return out;
}
//-----------------------------------------------------------------------------
Matrix3& translate(T_Scalar x, T_Scalar y)
{
return preMultiply(getTranslation(x,y));
}
//-----------------------------------------------------------------------------
Matrix3& translate(const Vector2<T_Scalar>& v)
{
return preMultiply(getTranslation(v));
}
//-----------------------------------------------------------------------------
static Matrix3& getScaling(Matrix3& out, const Vector2<T_Scalar>& v)
{
return getScaling(out, v.x(), v.y());
}
//-----------------------------------------------------------------------------
static Matrix3 getScaling(const Vector2<T_Scalar>& v)
{
Matrix3 m;
return getScaling(m, v.x(), v.y());
}
//-----------------------------------------------------------------------------
static Matrix3 getScaling(T_Scalar x, T_Scalar y)
{
Matrix3 m;
return getScaling(m, x, y);
}
//-----------------------------------------------------------------------------
static Matrix3& getScaling(Matrix3& out, T_Scalar x, T_Scalar y)
{
out.setIdentity();
out.e(0,0) = x;
out.e(1,1) = y;
return out;
}
//-----------------------------------------------------------------------------
Matrix3& scale(T_Scalar x, T_Scalar y)
{
return preMultiply(getScaling(x,y));
}
//-----------------------------------------------------------------------------
Matrix3& scale(const Vector2<T_Scalar>& v)
{
return preMultiply(getScaling(v.x(),v.y()));
}
//-----------------------------------------------------------------------------
static Matrix3& multiply(Matrix3& out, const Matrix3& p, const Matrix3& q)
{
VL_CHECK(out.ptr() != p.ptr() && out.ptr() != q.ptr());
out.e(0,0) = q.e(0,0)*p.e(0,0) + q.e(1,0)*p.e(0,1) + q.e(2,0)*p.e(0,2);
out.e(0,1) = q.e(0,1)*p.e(0,0) + q.e(1,1)*p.e(0,1) + q.e(2,1)*p.e(0,2);
out.e(0,2) = q.e(0,2)*p.e(0,0) + q.e(1,2)*p.e(0,1) + q.e(2,2)*p.e(0,2);
out.e(1,0) = q.e(0,0)*p.e(1,0) + q.e(1,0)*p.e(1,1) + q.e(2,0)*p.e(1,2);
out.e(1,1) = q.e(0,1)*p.e(1,0) + q.e(1,1)*p.e(1,1) + q.e(2,1)*p.e(1,2);
out.e(1,2) = q.e(0,2)*p.e(1,0) + q.e(1,2)*p.e(1,1) + q.e(2,2)*p.e(1,2);
out.e(2,0) = q.e(0,0)*p.e(2,0) + q.e(1,0)*p.e(2,1) + q.e(2,0)*p.e(2,2);
out.e(2,1) = q.e(0,1)*p.e(2,0) + q.e(1,1)*p.e(2,1) + q.e(2,1)*p.e(2,2);
out.e(2,2) = q.e(0,2)*p.e(2,0) + q.e(1,2)*p.e(2,1) + q.e(2,2)*p.e(2,2);
return out;
}
//-----------------------------------------------------------------------------
Matrix3& postMultiply(const Matrix3& m)
{
Matrix3<T_Scalar> t;
return *this = multiply(t, *this, m);
}
//-----------------------------------------------------------------------------
Matrix3& preMultiply(const Matrix3& m)
{
Matrix3<T_Scalar> t;
return *this = multiply(t, m, *this);
}
//-----------------------------------------------------------------------------
const T_Scalar& e(int i, int j) const { return mVec[j][i]; }
T_Scalar& e(int i, int j) { return mVec[j][i]; }
private:
const Vector3<T_Scalar>& operator[](unsigned int i) const { VL_CHECK(i<3); return mVec[i]; }
Vector3<T_Scalar>& operator[](unsigned int i) { VL_CHECK(i<3); return mVec[i]; }
protected:
Vector3<T_Scalar> mVec[3];
};
//-----------------------------------------------------------------------------
// OPERATORS
//-----------------------------------------------------------------------------
template<typename T_Scalar>
inline Matrix3<T_Scalar> operator*(const Matrix3<T_Scalar>& p, const Matrix3<T_Scalar>& q)
{
Matrix3<T_Scalar> t;
Matrix3<T_Scalar>::multiply(t, p, q);
return t;
}
//-----------------------------------------------------------------------------
template<typename T_Scalar>
inline Matrix3<T_Scalar> operator+(T_Scalar d, const Matrix3<T_Scalar>& m)
{
return m + d;
}
//-----------------------------------------------------------------------------
template<typename T_Scalar>
inline Matrix3<T_Scalar> operator*(T_Scalar d, const Matrix3<T_Scalar>& m)
{
return m * d;
}
//-----------------------------------------------------------------------------
//! Post multiplication: matrix * column vector
template<typename T_Scalar>
inline Vector3<T_Scalar> operator*(const Matrix3<T_Scalar>& m, const Vector3<T_Scalar>& v)
{
Vector3<T_Scalar> t;
t.x() = v.x()*m.e(0,0) + v.y()*m.e(0,1) + v.z()*m.e(0,2);
t.y() = v.x()*m.e(1,0) + v.y()*m.e(1,1) + v.z()*m.e(1,2);
t.z() = v.x()*m.e(2,0) + v.y()*m.e(2,1) + v.z()*m.e(2,2);
return t;
}
//-----------------------------------------------------------------------------
//! Post multiplication: matrix * column vector
//! The incoming vector is considered a Vector3<T_Scalar> with the component z = 0
template<typename T_Scalar>
inline Vector2<T_Scalar> operator*(const Matrix3<T_Scalar>& m, const Vector2<T_Scalar>& v)
{
Vector2<T_Scalar> t;
t.x() = v.x()*m.e(0,0) + v.y()*m.e(0,1) /*+ 0*m.e(0,2)*/;
t.y() = v.x()*m.e(1,0) + v.y()*m.e(1,1) /*+ 0*m.e(1,2)*/;
return t;
}
//-----------------------------------------------------------------------------
//! pre-multiplication: row vector * matrix
template<typename T_Scalar>
inline Vector3<T_Scalar> operator*(const Vector3<T_Scalar>& v, const Matrix3<T_Scalar>& m)
{
Vector3<T_Scalar> t;
t.x() = v.x()*m.e(0,0) + v.y()*m.e(1,0) + v.z()*m.e(2,0);
t.y() = v.x()*m.e(0,1) + v.y()*m.e(1,1) + v.z()*m.e(2,1);
t.z() = v.x()*m.e(0,2) + v.y()*m.e(1,2) + v.z()*m.e(2,2);
return t;
}
//-----------------------------------------------------------------------------
//! pre-multiplication: row vector * matrix
//! The incoming vector is considered a Vector3<T_Scalar> with the component z = 0
template<typename T_Scalar>
inline Vector2<T_Scalar> operator*(const Vector2<T_Scalar>& v, const Matrix3<T_Scalar>& m)
{
Vector2<T_Scalar> t;
t.x() = v.x()*m.e(0,0) + v.y()*m.e(1,0) /*+ 0*m.e(2,0)*/;
t.y() = v.x()*m.e(0,1) + v.y()*m.e(1,1) /*+ 0*m.e(2,1)*/;
return t;
}
//-----------------------------------------------------------------------------
template<typename T_Scalar>
Matrix3<T_Scalar> Matrix3<T_Scalar>::getRotation(T_Scalar degrees)
{
Matrix3<T_Scalar> rot;
degrees = degrees * (T_Scalar)dDEG_TO_RAD;
T_Scalar s = (T_Scalar) sin(degrees);
T_Scalar c = (T_Scalar) cos(degrees);
rot.e(0,0) = (T_Scalar)c;
rot.e(1,1) = (T_Scalar)c;
rot.e(1,0) = (T_Scalar)s;
rot.e(0,1) = -(T_Scalar)s;
return rot;
}
//-----------------------------------------------------------------------------
template<typename T_Scalar>
T_Scalar Matrix3<T_Scalar>::getInverse(Matrix3<T_Scalar>& dest) const
{
if (&dest == this)
{
Matrix3<T_Scalar> tmp;
T_Scalar det = getInverse(tmp);
dest = tmp;
return det;
}
else
{
const T_Scalar& a11 = e(0,0);
const T_Scalar& a21 = e(1,0);
const T_Scalar& a31 = e(2,0);
const T_Scalar& a12 = e(0,1);
const T_Scalar& a22 = e(1,1);
const T_Scalar& a32 = e(2,1);
const T_Scalar& a13 = e(0,2);
const T_Scalar& a23 = e(1,2);
const T_Scalar& a33 = e(2,2);
T_Scalar A = a22*a33 - a32*a23;
T_Scalar B = a23*a31 - a33*a21;
T_Scalar C = a21*a32 - a31*a22;
T_Scalar det = a11*A + a12*B + a13*C;
if (det == 0)
dest.fill(0);
else
dest = Matrix3<T_Scalar>(A, a13*a32 - a33*a12, a12*a23 - a22*a13,
B, a11*a33 - a31*a13, a13*a21 - a23*a11,
C, a12*a31 - a32*a11, a11*a22 - a21*a12) / det;
return det;
}
}
//-----------------------------------------------------------------------------
//! A 3x3 matrix using \p double precision.
typedef Matrix3<double> dmat3;
//! A 3x3 matrix using \p float precision.
typedef Matrix3<float> fmat3;
//! A 3x3 matrix using \p int precision.
typedef Matrix3<int> imat3;
//! A 3x3 matrix using \p unsigned int precision.
typedef Matrix3<unsigned int> umat3;
#if VL_PIPELINE_PRECISION == 2
//! Defined as: \p 'typedef \p dmat3 \p mat3'. See also \ref VL_PIPELINE_PRECISION.
typedef dmat3 mat3;
#else
//! Defined as: \p 'typedef \p fmat3 \p mat3'. See also \ref VL_PIPELINE_PRECISION.
typedef fmat3 mat3;
#endif
}
#endif